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1 Introduction

The central prediction of asset pricing theory is that average return on any security is pro-

portional to its risk, which is measured, in the case of the canonical consumption-based

model (e.g. Breeden (1979)) by the conditional covariance of returns with aggregate con-

sumption growth. This prediction fails dramatically when confronted with the cross-section

of expected returns on the size and book-to-market sorted equity portfolios of Fama and

French (1993), as long as unconditional covariances are used to measure consumption risk

(or aggregate wealth risk). A number of recent studies have argued that conditioning infor-

mation substantially improves the performance of the capital asset pricing model, as well as

of its consumption-based counterpart, to explain the cross-section of average returns.1 In

order for a conditional asset pricing model (e.g. CAPM, ICAPM, consumption CAPM, etc.)

to be able to explain the cross-section of asset returns, the high average return assets (e.g.,

“value” stocks) should have higher conditional covariances with the risk factor(s) (e.g. mar-

ket return or aggregate consumption growth rate) than the low average return assets (e.g.,

“growth” stocks) when factor risk prices are high, while the opposite should hold when risk

prices are low. For example, Lettau and Ludvigson (2001b) present evidence of such pat-

terns of comovement between conditional betas and risk premia and argue that a conditional

consumption-CAPM can explain the value premium as long as the price of consumption risk

(risk aversion) can vary over time.

In this paper I show that the dynamics of conditional moments of returns are not consis-

tent with the canonical conditional (C)CAPM. I employ a novel econometric procedure that

exploits this information in testing the model. For example, using the conditioning variable

proposed by Lettau and Ludvigson (2001b), I find that conditional covariances of value port-

folios with aggregate consumption growth are indeed higher during “bad times” (when risk

premia are high) than in “good times” (when risk premia are low); the opposite is true for

the growth portfolios. While the magnitude of this comovement between covariances and

1For some of the most recent contributions to this literature, see, e.g., Lettau and Ludvigson (2001b),
Lustig and Nieuwerburgh (2005), Petkova and Zhang (2004), and Santos and Veronesi (2006).
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prices of risk is small, it is at least qualitatively consistent with an explanation based on a

conditional consumption CAPM. However, the conditional (C)CAPM implies that expected

returns on value stocks should be particularly high in “bad times,” since their riskiness in-

creases when the price of risk is high. Empirically, the opposite appears to be true: it is

the growth stocks, whose covariances with consumption growth is lower in bad times, that

experience higher conditional expected returns in the states of the world associated with the

high price of consumption risk.2 Consequently, imposing restrictions on the joint dynamics

of conditional moments of returns and factor risk prices in asset pricing tests leads to pricing

errors of almost as great a magnitude as generated by the unconditional models. This puz-

zling conclusion holds for a range of variables used to specify the conditioning information

set. It parallels the findings of Lewellen and Nagel (2006), who estimate conditional market

betas using high-frequency return data and show that the variation in betas and the market

risk premium is not sufficient to explain the CAPM “anomalies” such as the value premium.

The key ingredient of my empirical analysis is the ability to test the conditional im-

plications of asset pricing models without imposing a tight parametric structure on the

conditional moments of returns and factor risk prices.3 For this purpose I develop an intu-

itive econometric procedure based on nonparametric kernel regression. In order to estimate

the conditional market prices of risk using the information contained in the cross section of

asset returns, I first estimate nonparametrically the conditional covariances of returns with

factors, as well as conditional expected returns.4 The risk prices can then be estimated by

2This conclusion might be sensitive to the specific conditioning information used: studies that explored
other predictive variables, such as Chen, Petkova, and Zhang (2008) do find that value premium is counter-
cyclical, albeit weakly. However, predictive variables that are not related to changing wealth composition
(e.g. default spread) have less ability to capture the dynamics of conditional covariances.

3In early contributions to the conditional CAPM/ICAPM literature, Bollerslev, Engle, and Wooldridge
(1988) model the dynamics of conditional covariances explicitly using GARCH methodology, Campbell
(1987a) and Harvey (1989) also model conditional covariances explicitly via linear instrumental variables.
Recently, Ferson and Siegel (2009) and Nagel and Singleton (2009) propose ways of imposing conditional
moment restrictions that increase power of asset pricing tests and find that a number of conditional models
considered in the literature are rejected.

4Following Pagan and Schwert (1990) it is common to use nonparametric regression to estimate con-
ditional volatility of stock returns. For other studies that have used nonparametric techniques to identify
nonlinearities in stochastic discount factors see, for example, Gallant, Hansen, and Tauchen (1990) and
Bansal and Viswanathan (1993); Chen and Fan (1999), Wang (2003), and Chen and Ludvigson (2009)
use nonparametric methods to test conditional moment restrictions implied by asset pricing models. The
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running “cross-sectional regressions” of expected returns on covariances for every state in

the conditioning information set. The approach is robust to misspecification of conditional

moments of returns and prices of risk. This is important, since most conditional asset pricing

models do not describe explicitly the dependence of covariances or risk prices on conditioning

information, and using ad hoc specification (e.g., linearity in conditioning variables) can lead

to spurious rejections, as emphasized by Brandt and Chapman (2007).

The conditioning variables used in much of the conditional asset pricing literature are

motivated by the evidence of time-series predictability of returns.5 In this paper I focus

on variables that reflect the time varying share of stock market wealth in total aggregate

wealth (i.e. including human capital). In particular, I follow Santos and Veronesi (2006) in

considering the effect of time-variation in the relative shares of financial assets and human

capital on the evolution of conditional covariances of asset returns with aggregate consump-

tion growth.6 They build a general equilibrium model with multiple assets, one of which

represents human wealth. The model predicts that the information about time-variation

in conditional betas and risk premia is contained in the ratio of labor income to consump-

tion, thus making it a useful variable for predicting expected returns. Duffee (2005) uses

similar logic to show that another variable representing time-varying composition of wealth,

the ratio of stock market wealth to consumption, captures significant variation in the con-

ditional covariance between consumption growth and stock returns, albeit in the direction

that makes it even harder to explain the variation in expected stock returns. In addition

procedure developed here is also related to the conditional method of moments of Brandt (1999).
5Lustig and Nieuwerburgh (2005) and Santos and Veronesi (2006) provide explicit theoretical justification

for their forecasting/conditioning variables.
6The idea that the composition of total wealth might be important for explaining asset returns is certainly

not new. Following the critique of observability of the market portfolio advanced by Roll (1977), empirical
researchers such as Stambaugh (1982) have attempted to extend the market portfolio proxy to incorporate
non-stock market assets. Fama and Schwert (1977) tested a version of CAPM that includes human capital
return as an additional factor and concluded that it does not significantly alter the performance of the one-
factor model. Ferson, Kandel, and Stambaugh (1987) tested (and rejected) a conditional CAPM in which
market betas vary due to the changing composition of the market portfolio, even if the return covariance
matrix is constant. More recently, some of the tests of conditional factor models have included proxies for
the return to human capital - e.g. Campbell (1996), Jagannathan and Wang (1996), Jagannathan, Kubota,
and Takehara (1998), Heaton and Lucas (2000), and Lettau and Ludvigson (2001b). A related, but different,
recent strand of literature has focused on the effect of consumption composition on asset returns - see Pakos
(2004), Piazzesi, Schneider, and Tuzel (2007), and Yogo (2006).
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to the variables motivated by these studies I include the consumption-wealth residual cay

of Lettau and Ludvigson (2001b), as the latter variable can also be thought of as reflecting

changes in the composition of total wealth, and is somewhat more successful empirically in

predicting the variation in conditional moments of returns over time and across assets.

My main result that the time-variation in the conditional covariance of Value minus

Growth portfolios with consumption growth is not reflected in the dynamics of conditional

expected returns on these portfolios is fairly robust to different ways of measuring consump-

tion growth risk, albeit can be weakened somewhat. In particular, using consumption of

stockholders (e.g. as in Mankiw and Zeldes (1991), Brav, Constantinides, and Geczy (2002),

and Malloy, Moskowitz, and Vissing-Jørgensen (2005)) changes the estimated time-series be-

havior of consumption risk of the basis portfolios, but only slightly weakens the result that

Value portfolios comove more with consumption than Growth in “bad” times, as measured

by aggregate consumption relative to wealth. Given that there is no such movement in the

corresponding conditional expected returns, the puzzle remains. Similarly, using long-run

rather than contemporaneous consumption growth (e.g. as in Parker and Julliard (2005)) at-

tenuates the variation on the conditional covariance with Value minus Growth returns. Using

the latter approach also produces small and insignificant pricing errors, but the advantage

over the standard model seems to come primarily from the variation in unconditional, rather

than conditional covariances. Similarly, I find that a two-factor model with contemporaneous

aggregate consumption growth and aggregate wealth growth performs fairly well in terms

of unconditional pricing errors (albeit less well conditionally). Such a model can be moti-

vated either by recursive preferences (Epstein and Zin (1991), Duffie and Epstein (1992)) or

social status concerns (Bakshi and Chen (1996), Roussanov (2010)). Given that the wealth

portfolio returns contain information about future consumption growth (Bansal and Yaron

(2004), Hansen, Heaton, and Li (2008), Hansen, Heaton, Lee, and Roussanov (2007)) the

latter results are potentially related.

This paper is structured as follows. Section 2 specifies the class of conditional asset pricing

models under study and discusses the approaches to testing such models. The econometric

methodology is developed in Section 3. I present the main empirical results in Section 4.
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Section 5 examines robustness of these results to alternative ways of measuring consumption

risk. Section 6 concludes. Discussion of the underlying economic theory, statistical properties

of the estimators, and data description is relegated to the Appendix.

2 Conditional linear factor models

2.1 Composition of total wealth and conditional CCAPM

A large class of consumption-based asset pricing models implies a relationship between con-

ditional expected returns on risky assets in excess of the risk-free rate and the conditional

covariance of excess returns with aggregate consumption growth. In the continuous-time

formulation of Breeden (1979) this relationship can be written as

E
(
Rei

t+1|It

)
= γtCov(Rei

t+1,
∆Ct+1

Ct

|It) (1)

where Rei
t+1 is the excess return and ∆Ct+1

Ct
is the growth rate of aggregate consumption. In

the classical setting with representative consumer who has power utility γt is constant over

time and equal to the coefficient of relative risk aversion. More generally, γt is a function of

variables contained in the information set It. This is the case in settings with time-varying

risk aversion, such as the habit formation models (Constantinides (1990) and Campbell and

Cochrane (1999)) where γt depends on the history of past consumption. It is also consistent

with heterogeneous investor models in which the price of aggregate consumption risk depends

on the evolution of the joint distribution of consumption shares and risk aversion parameters

across households (e.g. Grossman and Shiller (1982), Chan and Kogan (2002)).

The possibility that the price of consumption covariance risk γt is time varying offers

some hope of rationalizing some puzzling features of the cross-section of stock returns within

the consumption-based asset pricing, as emphasized by Campbell and Cochrane (2000).

Assets that have the same unconditional covariance with consumption growth can earn

different average returns if conditional covariances differ. Assets that covary more with
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consumption when the price of consumption risk γt is high are riskier, and therefore will

have higher expected returns. In particular, Lettau and Ludvigson (2001b) argue that the

“value premium” - the tendency of stocks with higher ratios of book to market equity to

earn higher returns than do low book to market stocks - can be explained by the fact that

“value” stocks comove more with consumption growth during “bad times” when the price of

risk is high than do growth stocks, even though the unconditional covariances are not very

different.

Generic conditional factor models are not testable using discrete-time data since the

econometrician does not necessarily observe the entire conditioning information set (Hansen

and Richard (1987)). However one can test specific versions of these models that make pre-

dictions regarding specific observable quantities that capture time-variation in risk premia:

E
(
Rei

t+1|zt

)
= γC (zt) Cov(Rei

t+1,
∆Ct+1

Ct

|zt). (2)

where zt ∈ It are some pre-specified variables that are thought to capture variation in the

price of consumption risk so that γt = γ (zt).

Here I specify the conditioning information set zt a priori following the recent literature

that emphasizes the fluctuations in the composition of aggregate consumption and wealth

and restrict it to variables that capture time variation in the shares of financial wealth and

human capital in the total aggregate wealth. Economic theory predicts that these variables

should be important for capturing time evolution in the conditional covariance between

consumption growth and stock returns, as emphasized by Duffee (2005). Indeed, if stock

market (or, more generally, all non-human) wealth W and a stream of labor income y are

the only state variables driving consumption, this covariance can be expressed, for asset i,

as

Covt(R
ei,

∆Ct+1

Ct

) = εW (zt) Covt(R
ei
t+1,

∆Wt+1

Wt

) + εy (zt) Covt(R
ei
t+1,

∆yt+1

yt

), (3)

where εW (zt) and εy (zt) are elasticities of consumption with respect to financial wealth

and labor income (which are assumed to be the only determinants of consumption). This
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equality holds exactly in continuous time if W and y follow diffusion processes (see Appendix

A) but similar expressions can be derived in continuous time, at least approximately (e.g.

Duffee (2005) uses the log-linearized Euler equation framework of Campbell (1996)). It shows

that even if conditional covariances of asset returns with the total stock market wealth and

with labor income growth are constant, the covariance of returns with consumption growth

need not be. For example, if stock returns and labor income growth are uncorrelated, this

covariance will be greater when consumption is more sensitive to changes in stock market

wealth.7

In the case of time-separable preferences with constant relative risk aversion coefficient

γ the conditional moment restriction (8) is equivalent to

E
(
Rei

t+1|zt

)
= γεW (zt) Cov(Rei

t+1, R
eM
t+1|zt) + γεy (zt) Cov(Rei

t+1,
∆yt+1

yt

|zt), (4)

where ReM
t+1 is the excess return on the total financial wealth portfolio - i.e. the market.

This observation that the risk premia associated with assets’ covariances with the state

variables are equal to the sensitivities of consumption to the state variables scaled by the

utility curvature is the central insight of Breeden (1979), which leads to the equivalence

between the multi-factor intertemporal CAPM and the single-factor consumption CAPM

(see Appendix A for details).

Under logarithmic utility (γ = 1) and risk-neutrality (γ = 0) the elasticities of consump-

tion εW and εy are simply shares of financial assets and human capital (present value of

future labor income) in the total wealth portfolio (e.g. Santos and Veronesi (2006), Duffee

(2005) ). In both of these cases the variation in the share of financial assets (e.g. the stock

market) in the total wealth induces time-variation in consumption risk, i.e. the covariation

of asset returns with aggregate consumption. This generates time variation in market prices

of risk associated with the determinants of consumption, i.e. financial wealth and labor

income. In general, the consumption elasticities incorporate the hedging demands that arise

7This decomposition relies on deliberately stark assumptions about the joint dynamics of labor income
and asset returns. If consumption reflects news about future growth rates (e.g., of labor income) or discount
rates, the covariances with these innovations will also enter (3).
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due to the time-variation in consumption and investment opportunities, thus commanding

additional risk premia (either positive or negative) compared to the log case. The degree to

which intertemporal hedging effects risk premia is controlled by the utility curvature γ. The

presence of intertemporal hedging demand is the reason I refer to this model as Intertemporal

CAPM, rather than, for example, a two-factor CAPM with human capital.

Motivated by the role of wealth composition in driving conditional moments of consump-

tion and asset returns I use the following variables in my investigation: the ratio of labor

income to consumption introduced by Santos and Veronesi (2006), the cointegrating resid-

ual of consumption, financial wealth and labor income developed by Lettau and Ludvigson

(2001a), the ratio of financial (stock market) wealth to aggregate consumption used by Duffee

(2005), as well as the ratio of financial wealth to labor income. Throughout the remainder of

the paper I will adopt the following notation for the four alternative conditioning variables:

the cointegrating residual of consumption and wealth is cay ; by analogy, the labor income

to consumption ratio is referred to as yc; the wealth to consumption ratio is labelled ac; the

ratio of financial wealth to consumption is denoted by ay .8

In addition to the canonical consumption CAPM and the human-capital ICAPM above

I consider another closely related model, referred to as CWCAPM, in which covariances of

returns with both consumption growth and aggregate financial wealth growth (e.g., proxied

by the market portfolio as above) contribute to the determination of asset’s expected excess

return:

E
(
Rei

t+1|zt

)
= λC (zt) Cov(Rei

t+1,
∆Ct+1

Ct

|zt) + λW (zt) Cov(Rei
t+1, R

eM
t+1|zt). (5)

This specification is motivated by the asset pricing models with recursive utility in which

aggregate wealth proxies for the continuation value of future consumption utility (e.g. Ep-

stein and Zin (1989) and Duffie and Epstein (1992)) and models with social status concerns

in which aggregate wealth is a state variable as long as it effects investors’ relative position

8This is different from measuring the ratio of total wealth to consumption (e.g. as estimated by Lustig,
Nieuwerburgh, and Verdelhan (2009)), which is a different object that can vary even in the absence of the
composition effect.
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(e.g. Bakshi and Chen (1996) and Roussanov (2010)). In the latter case, the ratio of aggre-

gate consumption to aggregate financial wealth is a fundamental state variable that drives

time-variation in the two prices of risk λC (zt) and λW (zt) (see Appendix A for a derivation).

The equilibrium pricing relations (2), (4) and (5) hold exactly in continuous time. Both

consumption and labor income data are time-averaged, which might potentially bias the

estimates. There is no simple solution to this problem (e.g., see Grossman, Melino, and

Shiller (1987)), since high-frequency macroeconomic data is either unavailable or of poor

quality. In all of the tests, except for those where cay (which can only be constructed using

quarterly data), I use monthly consumption and labor income data (see Appendix D for data

description). A number of authors, such as Campbell (1996) have formulated their models

explicitly in discrete time in order to circumvent this issue. Doing so, however, requires ad

hoc assumptions on the dynamics of human capital and asset returns.9 One of the purposes

of the nonparametric estimation methodology employed here is precisely to avoid making

such auxiliary assumptions.

2.2 Testing conditional restrictions

Linear factor models of empirical asset pricing can be specified as restrictions on first and

second moments of (excess) asset returns Re and some fundamental factors f such as

Et

(
Re

t+1

)
= Covt

(
Re

t+1, ft+1

)′
λt, (6)

where λ is the vector of risk prices associated with the factors, which generally vary over

time. This representation is equivalent to the stochastic discount factor representation and

the somewhat more traditional beta representation (see Cochrane (2005) for discussion).

9For example, Lustig and Nieuwerburgh (2008) argue that rates of return on human capital have a
complicated relationship with financial asset returns that makes proxying for the human wealth return with
either labor income growth or stock market return inappropriate. See also the discussion in Hansen, Heaton,
Lee, and Roussanov (2007).
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As is well known, the conditional model above does not in general imply the unconditional

model

E
(
Rei

t+1

)
= Cov

(
Rei

t+1, ft+1

)′
λ̄.

Thus the conditional model cannot be tested directly using standard econometric methods.

The usual approach to testing such models (e.g. Cochrane (1996)) amounts to assuming

that the conditional covariances and expected returns are (linear) functions of prespecified

conditioning variable(s) and testing the unconditional ‘scaled factor’ models of the form

E
(
Rei

t+1

)
= Cov

(
Rei

t+1, f̃t+1

)′
λ̃, (7)

where f̃t+1 = ft+1 ⊗ [1, zt] and z is the vector of instruments that are assumed to capture all

of the relevant conditioning information. The focus of this paper is on testing the conditional

moment restrictions

E
(
Rei

t+1|zt

)
= Cov

(
Rei

t+1, ft+1|zt

)′
λ (zt) , (8)

as well as their unconditional implications

E
(
Rei

t+1

)
= E

[
Cov

(
Rei

t+1, ft+1|zt

)′
λ (zt)

]
. (9)

Imposing conditional moment restrictions is equivalent to augmenting the space of test

assets10 with a large number of ‘managed’ portfolios that use the conditioning variable to

determine the portfolio weights (e.g., see Cochrane (1996)). Therefore, given this large

number of moment restrictions, the procedure used here provides a much more powerful test

of the conditional model than does (7).

10Daniel and Titman (2005) argue that the linear factor model tests that use size and book-to-market
sorted portfolios as the only test assets have low power. They suggest procedures for constructing test
portfolios that avoid this problem and find that the performance of some popular linear factor models,
including Lettau and Ludvigson (2001b), on these alternative portfolios is quite poor. While I do not form
alternative portfolios explicitly, imposing the conditional moment restrictions can be viewed as a version of
this approach.
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3 Nonparametric cross-sectional regression

3.1 Estimation of conditional moments and market prices of risk

In this section I develop an econometric approach to estimating linear factor models with

conditioning information. This class of models can be summarized by the set of N conditional

moment restrictions, each corresponding to one of the test assets i ∈ {1, . . . , N} :

E
(
Rei

t+1 − Cov(Rei
t+1, ft+1|zt)

′λ (zt) |zt

)
= 0,

where Rei
t+1denotes excess returns on asset i and ft+1 is the K-vector of factors. The condi-

tioning variable zt is in general a d-dimensional vector.

For each fixed value z, the estimator of the vector of (conditional) risk prices is then

λ̂ (z) = arg min
λ

{
g (z)′ W (z)g (z)

}
,

where

g (z) = Ê
(
Re

t+1|z
)− Ĉov

(
Re

t+1, ft+1|z
)′

λ

and W is a weighting matrix11 that can be state-dependent. Letting the vector of conditional

mean returns to be denoted m (z) and the N ×K matrix of conditional covariances between

excess returns and factors be cv (z), the estimator is given by the weighted least-squares

regression of conditional mean returns on conditional covariances:

λ̂ (z) =
(
ĉv (z)′ W ĉv (z)

)−1
ĉv (z)′ Wm̂ (z) ,

where the hatted variables refer to the estimated quantities, as usual. I use the nonparametric

11The nonparametric approach used by Wang (2003) can be viewed as a special case of the method
considered here. He estimates stochastic discount factor (SDF) loadings under the assumption that the
factor mimicking portfolios are priced exactly, and then uses this estimated SDF to test its ability to price
a set of portfolio returns. In other words, he uses one set of (conditional) moment conditions for estimation
(by setting K conditional moments to zero in sample) and another set of N moment conditions for testing.
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kernel regression approach to construct these estimators as follows.

m̂ (z) = Ê
(
Re

t+1|z
)

=
T−1∑
t=1

Re
t+1K

(
z−zt

h

)
∑T−1

t=1 K
(

z−zt

h

) ,

ĉv (z) = Ĉov
(
Re

t+1, ft+1|z
)

= Ê
(
Re

t+1ft+1|z
)− Ê

(
Re

t+1|z
)′ ⊗ Ê (ft+1|z)

=
T−1∑
t=1

(
f ′t+1R

e
t+1

)
K

(
z−zt

h

)
∑T−1

t=1 K
(

z−zt

h

) −
(

T−1∑
t=1

ft+1K
(

z−zt

h

)
∑T−1

t=1 K
(

z−zt

h

)
)′

⊗
(

T−1∑
t=1

Re
t+1K

(
z−zt

h

)
∑T−1

t=1 K
(

z−zt

h

)
)

,

where K (.) is a kernel weighting function.

3.2 Properties of the estimator

Consistency of the price of risk estimates λ̂ (z) under the null hypothesis that the asset

pricing model holds (i.e. the population moment conditions are satisfied) follows from the

consistency of nonparametric conditional moment estimators above. More formal discussion

of consistency of the nonparametric price of risk estimators can be found in Appendix B.

Similarly to the standard two-pass method, the usual errors-in-variables problem arising

from the fact that the covariances of returns with factors are estimated is also present in

the context of conditional estimation considered here. It does not affect the consistency of

our estimators as long as the “first-stage” quantities (conditional means and covariances)

are estimated consistently, but it does make the market price of risk estimators biased. In

addition, the nonparametric regression estimators of conditional moments are also biased.

This is the usual cost associated with the flexibility allowed by nonparametric estimation. Of

course, a parametric conditional model has the same problem unless economic theory specifies

the functional form of the conditional moments and risk prices. Unfortunately, there is no

straightforward way to “correct” for these two types of bias since the asymptotic theory for

the estimators proposed above is rather involved and its development is beyond the scope of

this paper12. In practice I use bootstrap methods to conduct statistical inference. Bootstrap

allows constructing confidence intervals based on the approximated empirical distribution

12Aı̈t-Sahalia (1992) presents a general method for constructing asymptotic distributions of estimators
based on nonparametric kernel functionals, which could be applied in the present setup.
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functions of the estimators under study. I provide the details of the bootstrap approach in

Appendix E. The main way of controlling both the bias and the variance of the estimators is

by choosing the bandwidth h, which essentially specifies how smooth the resulting functional

estimates are (usually, too much smoothing increases the bias, whereas too little smoothing

increases the variance of the estimators). It is known that the choice of a kernel function

does not have a significant effect on the statistical properties of kernel estimators (see Pagan

and Ullah (1999) ), as long as they satisfy certain simple conditions (see Appendix B). I use

Epanechnikov kernel, which is known to be optimal (in terms of the trade-off between bias

and variance) whenever a single conditioning variable is used (as in my application).

Bandwidth selection is an unresolved issue that plagues much of the nonparametric es-

timation literature. It is a standard result that the optimal (in the sense that it minimizes

the mean integrated square error of the nonparametric regression) smoothing parameter h

is given by

h = cσ (z) T− 1
d+4 ,

where σ is the (vector of) unconditional standard deviation(s) of z, T is the sample size, d is

the dimension of z, and c is a constant. Therefore, in practice, one only is given an optimal

convergence rate for the bandwidth, since the latter constant is unrestricted. Moreover,

when variables in z are highly persistent, which is the case for most of the financial ratios

and is true for some of the variables used in this study, larger bandwidths are optimal and

convergence rates are slower than in the standard stationary setup (see Bandi (2004)).

There exist a number of techniques for “automatic” choice of the optimal constant c,

and therefore of the optimal smoothing parameter. Most of them are based on either leave-

one-out cross-validation or bootstrap and concentrate on minimizing the prediction error of

the conditional moment estimators. Since in the present context the conditional moment

estimators are “first-pass” quantities used in constructing the “second-pass” estimates of the

market prices of risk, it is unclear that any of those procedures are equally suitable in the

present context. At the same time, given the criterion that the estimators proposed here are

based on, it is natural to make the choice of the bandwidth parameter subject to the same
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criterion. Consider


 λ̂ (z)

ĥ(z)


 = arg min

λ

{
g (z; λ, h)′ W (z; h)g (z; λ, h)

}
,

where

g (z; λ, h) = m̂ (z; h)− ĉv (z; h)′ λ.

Then the first-order conditions still give the estimators λ̂ (z) above, but now the bandwidth

is chosen automatically. Pending further development of the asymptotic theory for the

estimators proposed here there is no claim that this method of choosing the bandwidth

is somehow “optimal.” I find, however, that the results obtained using this approach do

not differ dramatically from those obtained with more standard procedures (for example,

minimizing the mean integrated standard error under the bootstrap distribution).

4 Empirical results

4.1 Conditional expected returns and conditional covariances

The set of assets I use to test conditional asset pricing models consists of the excess returns

on the six benchmark equity portfolios of Fama and French (1992), which are the intersection

of the two portfolios formed on size and three portfolios formed on the ratio of book equity

to market equity. The time period is fourth quarter of 1952 through the fourth quarter of

2008 (see Appendix D for detailed description of the data). Before evaluating the cross-

sectional fit of the asset pricing models I analyze the dynamics of conditional moments of

the test returns. All of these quantities are estimated nonparametrically; in order to reduce

the bias in the estimates I present the means of the sampling distributions along with the

95% confidence intervals obtained via stationary bootstrap (see Appendix C for details on

the bootstrap procedure).

Figure 2 displays conditional expected returns on the 25 portfolios as functions of cay

(solid lines), along with the unconditional average returns (straight dashed lines). Expected
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returns on all of the portfolios increase throughout most of the range of cay , but decline

at the high values of the state variable. The strength of the relationship varies across

portfolios. For large portfolios, and especially for large growth portfolios, the differences

between conditional mean returns in low-cay states and the high-cay states are a lot more

pronounced and more statistically significant than they are for the small portfolios (especially

small growth). For the large growth portfolios expected returns vary between being close to

zero or slightly negative to over 4% per quarter, around the unconditional mean of about

2%. For the small value portfolio the expected returns vary between 1% and 5%, reverting

back to the unconditional mean of 3.5% per quarter in the right tail of the distribution of

cay . For the small portfolios the variation in expected returns is less detectable statistically

than for large portfolios, as the 95% confidence intervals include the unconditional average

return thoughout most of the range except the lowest values of cay .

Figure 1 reports the estimates of conditional covariances of portfolio returns with con-

sumption growth as a function of cay . The functional relationship between conditional

covariance and the conditioning variable is roughly linear for all portfolios throughout most

of range of the state variable, except at the tails of its distribution where covariances appear

concave but poorly estimated due to the relatively small number of extreme observations.

All of the covariances are decreasing in cay , which is consistent with the wealth composition

effect emphasized by Duffee (2005) if cay reflects changes in asset wealth more than changes

in the value of human wealth (which is unobservable). The decline appears somewhat steeper

for the small and growth portfolios. Since high values of cay predict high expected returns,

they can be thought of as “bad” states of the world, in which the price of market risk is

high. Conversely, low cay is associated with low risk premia. Lettau and Ludvigson (2001b)

argue that this is the mechanism through which conditional-beta models can explain the

high excess returns on value portfolios relative to the growth portfolios.

Are these differences in the direction of conditional covariances as functions of cay sig-

nificant, economically or statistically?13 I test whether the differences between consumption

13The difference between value and growth portfolios is less pronounced in the covariances with the market
return and with the labor income growth (not reported here). The yc variable does not appear to capture
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growth covariances of the value and growth portfolios within the same size grouping are sig-

nificant, at a given value of the state variable. Figure 3 (lower panels) presents the plots of

pairwise differences in conditional covariances between the two large and two small portfolio

portfolios along the value-growth dimension, along with the 95% confidence bands. Broadly,

the differences between the value and growth portfolios described above are marginally sig-

nificant at 5% level in the right tail of the distribution of cay : when the variable is above

0.02 (”bad states”) covariance with aggregate consumption growth is higher for the large

value portfolio than for the large growth, and for small value rather than for small growth.

Conversely, when cay is below −0.02 (”good states”), the covariances are higher for the value

portfolios, although these differences are not significant (which could be due, in part, to the

inefficiency of nonparametric estimates). Given that in almost 60% of all observations cay

is in the interval [−0.01, 0.01], most of the time there is no statistically detectable difference

in conditional covariances between value and growth portfolios.

In order to formally test whether the conditional moments evaluated at high and low val-

ues of cay are different, I construct bootstrap distributions for the differences between point

estimates corresponding to such high and low values. Using these distributions recentered

around zero I can test whether the estimated differences between conditional moments of a

portfolio excess return evaluated at two different points in the state space are positive (for

expected returns) or negative (for conditional covariances). table I reports the differences

between the point estimates of the conditional moments and the bootstrap p-values for these

tests. The conditional means and covariances are estimated at values of cay equal to −0.0174

and 0.02 which correspond approximately to the 10th and 90th percentiles of the empirical

distribution of this variable. The differences in expected returns between the high and the

low values of cay are positive and statistically significant for the basis portfolios, with the

one-sided p-values at or below 1 percent. Again, this is consistent with the notion that low

values of cay represent “good states” and correspond to low risk premia, while high values

- “bad states” and high risk premia.

a substantial cross-sectional variation in the dynamics of conditional covariances, while ac and ay appear to
work similarly to and cay . These estimates are omitted here but are available upon request
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The estimated differences of conditional covariances of basis portfolio returns with aggre-

gate consumption growth are negative, but the p-values are large, except the Large Growth

portfolios, for which we can reject the hypothesis that the difference is non-negative. Impor-

tantly, however, the conditional covariances of the long-short (value minus growth) portfolio

excess returns with consumption growth do exhibit the same pattern of time-variation as

noted above: value is riskier than growth in “bad times” and vice versa. Indeed, for both

large and small stocks the difference between point estimates of the conditional covariances

is significantly positive with p-values of 3 percent.

Despite the marginal statistical significance and small economic magnitude of these differ-

ences, they have the right sign in order to be consistent with the value premium. In principle,

given a “right” amount of variation in the price of consumption risk it might be possible to

reconcile the unconditional expected returns predicted by the model with those observed in

the data. However, the estimated conditional first moments paint a very different picture.

The logic of the conditional (C)CAPM implies that value portfolios are riskier because they

have higher conditional covariance with the factor (consumption growth) in bad times. It

also implies that, as a consequence, conditional expected returns on value portfolios must be

especially high in those states of the world, relative to the growth portfolios. This is not the

case empirically: as described above, conditional expected returns on value (especially the

small value) portfolios are only weakly increasing as a function of cay . At the same time,

growth portfolios exhibit the strongest predictability, to the extent that the expected returns

on large value and small growth are virtually the same in the “bad” states in which cay is

high, even though they are quite different unconditionally. In particular, the differences of

conditional expected returns between value and growth portfolios within each size grouping,

plotted in the top two panel of figure 3 are in stark contrast to the corresponding differ-

ences in consumption covariances. While differences between covariances increase in “bad

states,” the differences in conditional expected returns are positive and flat throughout most

of the range of cay and decrease in the right tail of the distribution, becoming significantly

negative. The bootstrap tests reported in table I indicate that the differences in condi-

tional expected returns on value minus growth portfolios between high and low cay states
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are not significantly different from zero, unlike the differences in conditional covariances,

which are positive. It appears that utilizing conditioning information poses a challenge for

consumption-risk models attempting to explain the value premium, since the dynamics of

risk and expected returns appear to have the opposite signs.

4.2 Time-varying price of consumption risk

The nonparametric cross-sectional regression allows me to estimate the price of consumption

risk (i.e., risk aversion) as a function of the conditioning variable. Figure 4 depicts the

estimated risk price as a function of cay . Similarly to the behavior of conditional excess

returns, the risk price is increasing as a function of the state variable throughout most of its

range, except for the largest values of cay where the risk price plummets. The estimate is

close to zero (and even slightly negative) for values of cay around −0.02, which correspond to

“good times” in the Lettau and Ludvigson (2001b) interpretation. It rises to values around

250 and above at the mean of the distribution of cay which is equal to zero, becoming

statistically reliably different from zero despite the wider confidence band. For values above

the mean of cay the price of risk rises rapidly, reaching values of 500 and above. While

such values for the quantity that is essentially the coefficient of relative risk aversion might

appear extremely large, they are broadly consistent with the models of time-varying risk

aversion such as Campbell and Cochrane (1999). However, after reaching its peak for values

of cay around 0.02, the risk price starts to decline rapidly as a function of the state variable,

plunging below zero for for cay above 0.03. While the confidence band is wide for these high

levels of the state variable, this nonlinearity in the risk price is statistically significant.

The fact that the estimated price of risk is not monotonic as a function of cay , which

appears do be driven by the non-monotonicity of conditional expected returns depicted in

Figure 2, may appear surprising. At least in some of the models of time-varying risk premia

the effective risk aversion is a monotonic function of the underlying state variable (e.g. the

surplus consumption ratio of Campbell and Cochrane (1999)). However, even if such a

model were true, the fact that cay captures some of the composition effect as well as the
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time-varying risk aversion, may lead to a non-monotonicity (since the composition effect is,

in general not monotonic - see discussion in Santos and Veronesi (2006)). Further, in models

with heterogenous agents such as Garleanu and Panageas (2009) is not even a monotonic

function of the underlying state variable (the consumption share of risk-tolerant investors). If

the model of interest did feature a monotonic relationship between the conditioning variable

the price of risk, one could in principle impose such a restriction in estimation (e.g. similarly

to Ait-Sahalia and Duarte (2003)), potentially improving the efficiency of the estimator as

well as increasing the power of the asset pricing tests.

4.3 Pricing errors: cay

The ability of the conditional models to explain the cross-section of returns is ultimately

judged based on their pricing errors. table II reports the average pricing error test statistics

for the two conditional models that use cay as the conditioning variable, as well as the bench-

mark unconditional and scaled-factor models. The first model (CCAPM) uses consumption

growth as the only factor. The second model (ICAPM) uses market return and labor income

growth as the two risk factors. The third model (CWCAPM) uses aggregate consumption

and aggregate wealth growth as the two factors.

Average pricing errors, for asset i, are given by

αi = Ê
[
Rei

t+1 − Ĉov(Rei
t+1, ft+1|zt)

′λ̂ (zt)
]
, (10)

where the conditional moments and prices of risk are estimated using the nonparametric

cross-sectional regression approach of Section 3.1. For the unconditional models (including

the scaled factor models) the corresponding unconditional moments are used. The prices of

risk in these latter cases are estimated by cross-sectional regression of expected returns on

covariances, which is equivalent to the standard SDF/GMM methodology (e.g. see Cochrane

(2005)). For the scaled factor models,

f̃t+1 = [ft+1, ft+1 ⊗ zt, zt]
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is used in place of ft+1 (I do not include zt in the cases of ICAPM and CWCAPM so as to

avoid having too many degrees of freedom).

Instead of testing whether the overall level of pricing errors across the portfolios is zero,

I focus on a few salient pricing errors that capture the essential features of the cross-section

of stock returns. Namely, I consider the pricing errors of four long short portfolios: small

value minus small growth, small growth minus large growth, small value minus large value,

and large value minus large growth. In order to test whether each one of these pricing errors

is equal to zero I compute their finite sample distribution by semi-parametric bootstrap.

Specifically, I use the estimated values of the covariances and prices of risk (as functions of

conditioning variables) to simulate excess returns on the 6 basis portfolios under the null

hypothesis that all of the 6 portfolios are priced correctly. These are used to obtain p-values

for the (two-sided) tests of whether the pricing errors on the four long-short portfolios are

different from zero.

The scaled-factor models do a much better job explaining the average returns than the

unconditional CCAPM and ICAPM. While for the unconditional consumption CCAPM only

the small value minus small growth pricing error is large and statistically significant at 1.6

percent per quarter, the three other pricing errors are also sizable - except for the large

value-growth spread all of the pricing errors are larger than the average excess returns on

the portfolios. The CCAPM scaled with cay cuts the small value-growth and small growth

minus large growth pricing errors by a factor of three, and none of the errors are significantly

different from zero. The unconditional ICAPM has similar magnitudes of pricing errors and

most of them are statistically significant, presumably because the covariances with the market

return are estimated much more precisely than covariances of returns with consumption

growth.

It is apparent that the conditional models estimated nonparametrically do not do a nearly

as good a job at explaining the cross-section of average returns as the scaled factor models.

For example, for the consumption CAPM with cay the average pricing errors have essentially

the same magnitudes as the unconditional CCAPM pricing errors. They are also estimated

with a similar degree of precision, as only the small value-growth pricing error is statistically
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significant at a 5% level.

The only exception is the CWCAPM model. This model has lower pricing errors even

unconditionally, with the small value minus small growth pricing error of 83 basis points per

quarter that is not statistically different from zero. Its only statistically significant pricing

error is large value minus large growth, which is equal to negative 51 basis points (i.e., the

opposite sign of the large value premium). It is not surprising that the scaled version of

this model can perform substantially better. What is somewhat surprising, in light of the

evidence above, is that imposing the conditional restrictions does not lead the model to be

rejected. While the pricing errors are larger than under the scaled model and much closer

to the unconditional model, the hypothesis that each pricing error is equal to zero cannot

be rejected.

Average pricing errors can understate the extent of mispricing if conditional pricing errors

are large but volatile. The conditional pricing errors can be assessed by looking directly at

their nonparametric estimates. Figure 5 depicts the conditional pricing errors on the selected

portfolios for the consumption CAPM as functions of cay :

Ê
(
Rei

t+1|zt

)− λ̂C (zt) Ĉov(Rei
t+1,

∆Ct+1

Ct

|zt).

For each of the six portfolios, the straight line gives the estimated conditional mean of the

pricing errors with 95% confidence bands around it. The straight dashed line is the pricing

error from the unconditional model, while the dash-dotted line gives the pricing error from

the scaled factor model (7), both obtained using the standard GMM procedure described

in Cochrane (2005). These figures show that most of the conditional pricing errors are

significantly larger in absolute value than the corresponding scaled-factor pricing errors, and

often bigger (in absolute value) than the unconditional model errors. In the middle of the

range of cay (which contains the majority of observations) most of the conditional pricing

errors coincide with the errors of the unconditional CCAPM. Interestingly, for a number

of portfolios the worst “mispricing” occurs in the tails of the distribution of cay . If the

conditional model is true, it is reasonable to expect it to have the greatest explanatory
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power in these “extreme” states of nature. That this is not the case is not surprising given

the fact that conditional covariances of value portfolios go up in “bad” states of the world

while their conditional expected returns do not. This results in value being underpriced in

the low cay states, and growth being underpriced in high cay states.

The conditional pricing errors are particularly informative in the case of CWCAPM,

where average pricing errors are not statistically significantly different from zero. Figure 6

presents conditional pricing errors for this specification as functions of cay :

Ê
(
Rei

t+1|zt

)− λ̂C (zt) Ĉov(Rei
t+1,

∆Ct+1

Ct

|zt)− λ̂W (zt) Ĉov(Rei
t+1,

∆Wt+1

Wt

|zt).

It is evident that for the three large-capitalization portfolios (bottom three panels) the

hypothesis that the pricing errors are zero cannot be rejected. While there is some variation

in the pricing errors as a function of the state variable, the bootstrap distributions of error

estimates are centered near zero for most of the range. However, for the small-capitalization

portfolios (top three panels) this is not the case. The conditional pricing errors are typically

as large or larger than the unconditional pricing errors, and their 95-percent confidence bands

do not include zero for substantial ranges of cay . In particular, for the small growth portfolio,

the pricing errors are significantly negative in the region of positive cay , with the exception of

the extreme right tail which has very few observations and wide error bounds. On the other

hand, the small growth portfolio has significantly positive errors in the same range, implying

that the value premium in small stocks is not explained well by the conditional model, at

least in “bad times”. In addition, the small neutral portfolio has positive conditional errors

throughout most of the middle range of cay , suggesting that the small stock premium is

not explained by the model either. This evidence suggests that tests of conditional models

based on unconditional pricing errors (or averages of conditional error) may have low power

as they ignore some of the information contained in the conditional moment restrictions.
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4.4 Pricing errors: alternative variables

In addition to the conditional model that use the consumption-wealth residual cay as the

conditioning variable, table II presents the corresponding results for the scaled factor and

conditional models that use the labor-consumption ratio yc as the instrument. The scaled

CCAPM and ICAPM do not perform as well as do their counterparts scaled with cay , in

that pricing errors are larger and statistically significant, but they still produce smaller

pricing errors than the unconditional models. Similarly to the above case, though, the full

conditional models estimated nonparametrically produce roughly the same pricing errors as

do the unconditional models.

table III presents the results of the cross-sectional average pricing error tests for the

conditional models that use one of the two composition of wealth variables measured at

monthly frequency - ay and ac. Both variables are quite successful in reducing pricing errors

under the scaled-factor specification. However, again, imposing the conditional moment

restrictions raises the magnitudes of the pricing errors back to their unconditional levels.

5 Robustness and Extensions

5.1 Comparison with parametric approaches

Could the conclusions reached above be obtained using more standard econometric ap-

proaches? Assume that the conditional means of consumption growth and excess returns,

as well as their conditional covariance - Et

(
∆Ct+1

Ct

)
, EtR

ei
t+1, and Covt(R

ei
t+1,

∆Ct+1

Ct
) - are all

linear in the vector of conditioning variables zt (which includes the constant). Then we can

estimate (e.g. as in Duffee (2005)) the following system:

∆Ct+1

Ct

= κ′zt + uc
t+1,

Rei
t+1 = µ′izt + ui

t+1,

C̃ov
i

t+1 = δ′izt + uci
t+1
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where C̃ov
i

t+1 =
(

∆Ct+1

Ct
− Et

∆Ct+1

Ct

) (
Rei

t+1 − EtR
ei
t+1

)
= uc

t+1u
i
t+1 is the ‘ex-post’ covariance of

consumption growth and excess returns on asset i, so that the ex ante conditional covariance

is given by its projection on the vector of conditioning variables:

Covt(R
ei
t+1,

∆Ct+1

Ct

) = EtC̃ov
i

t+1 = δ′izt. (11)

table IV shows the coefficients from the regressions of returns and the ex-post consump-

tion covariances on zt for several choices of the conditioning variable. The assets used are

three portfolios formed from the 6 benchmark portfolios sorted on market capitalization on

book/market equity ratios used by Fama and French (1992). The growth portfolio is the

equal-weighted average of the small and large growth portfolios, the value and neutral port-

folios are, similarly, equal-weighted averages across value and neutral portfolios, respectively.

If high values of zt are associated with “bad times” and, consequently, a high price of

consumption risk, the assets whose covariances with consumption growth are increasing in

zt are riskier. If the CCAPM holds, their expected excess returns should also increase in zt.

Duffee (2005) finds that an increase in the ratio of stock market wealth to consumption is

associated with a rise in the covariance of the aggregate stock market return and consumption

growth. However, it is also associated with low expected stock returns. The top panel

illustrates that the same is true for each of the book/market-sorted portfolios. In fact, their

does not appear to be much difference in the sensitivities of either conditional expected

returns or conditional covariances to this variable, despite the fact that it appears to be a

useful scaling variable as shown in section 4.4.

The two middle panels of table IV display the sensitivities of first and second moments of

returns to cay . It does appear that cay plays a similar role at quarterly frequency to the role

played by ac at monthly frequency: rising cay not only predicts higher expected returns, but

also lower covariances of consumption with returns, presumably due to the declining share of

financial assets in total wealth. The expected return sensitivities exhibit the pattern familiar

from section 4.1: value returns are not quite as predictable as growth returns (in terms of

the slope coefficient). There is virtually no difference in covariances if the entire sample is
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used for the estimation. However, using a shorter subsample ending in the second quarter

of 2003, which is closer to the sample used by Lettau and Ludvigson (2001b), I find that the

covariance of value returns with consumption growth actually increases when cay goes up,

while growth returns’ covariance declines. This is consistent with the argument of Lettau

and Ludvigson (2001b) that value is riskier in “bad times,” but inconsistent with the fact

that value’s expected returns are not more but less sensitive than growth’s expected returns.

Further, the coefficients for the conditional covariances are not statistically significantly

different from zero, as their standard errors are very large. This might be in part due to the

fact that the linear model is misspecified. Finally, using the labor-to-consumption ratio as

the predictive variable (bottom panel) leads to similar conclusions: covariances and expected

returns appear to move in the opposite directions for all portfolios, and while there is some

heterogeneity across covariance sensitivities, there is much less difference in expected return

sensitivities.

In principle, one could go further and impose conditional moment restrictions on the asset

returns jointly. This entails making parametric assumptions on the functional form of risk

prices. For example, one could follow Duffee (2005) and assume that γt = γ0 + γ1xt. Then

the model could be estimated using the instrumental variables GMM approach of Campbell

(1987b) and Harvey (1989). However, such a model would be misspecified by construction,

since expected returns, covariances, and prices of risk cannot be all linear. Thus even if

the true conditional model holds, it could produce non-trivial pricing errors. Brandt and

Chapman (2007) emphasize that the nonlinearity need not be large to produce a spurious

rejection. Alternatively, one could avoid imposing parametric structure on the prices of risk

and only make assumptions about the dynamics of conditional second moments, as done, for

example, by Ferson and Harvey (1999), among others. I discuss this approach in Appendix

E and show that, indeed, one can reject the conditional CCAPM using cay . Still, the

conditional restrictions imposed using this method rely crucially on the linear specification

of conditional betas. Therefore, if the linear model for conditional betas is misspecified, it

is possible that the conditional tests will reject even the true conditional model. Ghysels

(1998) argues that this problem is potentially quite severe, to the extent that the conditional
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beta models can perform even worse empirically than the unconditional models. Given

the substantial difference in the estimated sensitivities of consumption covariances to the

conditioning variable between the samples the concern over misspecification should make it

hard to argue in favor of using the parametric approaches for imposing conditional moment

restrictions.

5.2 Consumption of stockholders

The fact that not all households participate in the equity market suggests an alternative

interpretation of the composition effect, i.e. the tendency of the conditional covariances of

stock returns with aggregate consumption growth to decline as a the contribution of finan-

cial wealth to consumption decreases. Since equity, which represents a large fraction of total

financial wealth, is concentrated in the hands of stockholders, their consumption is likely

to be disproportionately effected by stock market fluctuations, relative to the consumption

of non-stockholders. Thus, a decrease in the value of equity would reduce the stockholders’

relative share of aggregate consumption, and therefore reduce the sensitivity of aggregate

consumption to the fluctuations in stock market wealth. Indeed, consistent with this inter-

pretation, Malloy, Moskowitz, and Vissing-Jørgensen (2005) use household-level data from

the Consumer Expenditure Survey (CEX) to show that the consumption-wealth residual cay

is highly negatively correlated with the time-varying share of stockholders’ consumption in

the aggregate consumption.

The direct implication of this interpretation of the composition effect is that the canonical

asset pricing relation 2 is misspecified as long as the measure of aggregate consumption

includes all households rather than just those that are marginal in the asset market of

interests (i.e., stockholders in the case where stock returns are the test assets). In order to

verify whether my conclusions are robust to this type of misspecification I use the data from

Malloy, Moskowitz, and Vissing-Jørgensen (2005) to test the conditional CCAPM. Their

measure of quarterly stockholder consumption growth is available at a monthly frequency

(i.e., for overlapping quarterly growth rates), but for a shorter time period (03.1983 - 11.2004)
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than the aggregate data used elsewhere in the paper. As a benchmark comparison, I also

use the monthly series of quarterly aggregate consumption growth based on the NIPA data

constructed by Malloy, Moskowitz, and Vissing-Jørgensen (2005) for the same time period.

I construct the monthly analog of the cay variable as a cointegrating residual of monthly

series for aggregate consumption, stock market wealth, and labor income; the resulting series

has very similar properties to the cay variable of Lettau and Ludvigson (2001b).

As before, I estimate conditional expected returns and conditional covariances of returns

with consumption growth jointly, by selecting kernel bandwidth so as to minimize the condi-

tional pricing errors for the cross-section of portfolio returns. The evidence in table V shows

that if differences between “good” and “bad” states in conditional covariances of returns

and consumption growth are measured the same way as above, the composition effect is

statistically detectable for stockholder consumption, at least for the large growth portfolio,

while the differences are not statistically significant for the NIPA aggregate consumption

growth measure over the same sample period (however, in both cases statistical significance

is somewhat sensitive to the choice of “high” and “low” states. Moreover, the magnitudes of

differences in covariances between high and low states are greater for stockholder consump-

tion than for aggregate consumption, which is likely due to the fact that levels of covariances

are proportionally higher for latter than for the former. For the value minus growth portfo-

lio returns, in both cases the difference is positive and statistically significant for the small

portfolios, consistent with the conditional CCAPM of the value effect, but not for the large

portfolios. As before, however, the differences in expected returns on these portfolios are

negative, albeit not statistically significantly.

In terms of the average pricing errors, the consumption CCAPM, both unconditional

and conditional, that uses stockholder consumption does appear to perform somewhat bet-

ter than the model with aggregate consumption estimated over the same sample period.

table VI displays the average pricing errors for the two sets of models, using either cay or

the stock market wealth-consumption ratio ac. While all of the versions of the CCAPM

that uses NIPA aggregate consumption growth have large and highly statistically signifi-

cant pricing errors on the Small Value minus Small Growth and Small Growth minus Large
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Growth portfolios, for the stockholder consumption CAPM these pricing errors are smaller

(although still substantial) and not statistically different from zero, with the exception of the

conditional CCAPM using ac where it is significant. However, for the stockholder consump-

tion CAPM the Small Value minus Large Value portfolio has a large (2 % per quarter) and

statistically significant pricing error, either unconditionally or when cay is used as the con-

ditioning variable. Moreover, the lack of statistical significance might be in part attributed

to the short sample, which makes estimated pricing errors highly imprecise, especially in

the nonparametric setting. Overall, there is evidence that using stockholder consumption to

measure risk in asset returns improves the performance of a canonical consumption-based

asset pricing model, but does not fully explain the cross section of equity returns. This con-

clusion is consistent with the evidence documented above that high average return portfolios

(e.g. small value) do not seem to have higher conditional expected returns than low average

return portfolios at times their risk measured by conditional covariance with consumption

growth is higher.

5.3 Long-run consumption growth risk

Another alternative way of measuring consumption risk is to use consumption growth com-

puted over a long time horizon, rather than contemporaneously as prescribed by a canonical

CCAPM. Parker (2003) shows that the variation in consumption risk as measured by the

conditional covariances of stock returns with long-run consumption growth over time is much

better aligned with time-variation in expected stock returns than is the case when contem-

poraneous consumption growth is used.

I estimated conditional covariances with long-run consumption growth as

Cov

(
Rt+1,

Ct+1+S

Ct

|zt

)
, (12)

for S equal to either 11 or 19 quarters. I then estimate the conditional CCAPM as before,

using this covariance as the measure of consumption risk.

Table VII displays the tests statistics for the differences in conditional moments between
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the high and low cay states. Consistent with the findings of Parker (2003) the composi-

tion effect is not present in the covariances of returns with long-run consumption growth,

in contrast to the contemporaneous covariances: for virtually all of the basis portfolios, the

difference in covariances between “bad” and “good” state are positive, and none are signif-

icantly different from zero. The fact that we cannot reject that the differences are zero are

likely due to the lack of statistical power in estimating time-variation in long-run covariances

rather than to the lack of comovement between long-run consumption risk and conditional

expected returns.

However, the cross-sectional patterns of time-varying long-run consumption risk are sim-

ilar to those identified for the short-run covariances, albeit weaker. The differences in con-

ditional covariances on long-short Value minus Growth portfolios are still positive, although

not statistically significant except for the small portfolios when consumption growth risk is

measured over horizon of 3 years (but not 5 years). As before, the differences in average re-

turns on Value minus Growth strategies between “bad” and “good” states have the opposite

(i.e. negative) sign from the differences in covariances but are not statistically different from

zero.

Table VIII presents the corresponding pricing error tests for the unconditional, scaled

and conditional versions of the long-run CCAPM with cay as the conditioning variable.

When consumption growth is computed over 3-year interval (i.e., S = 11) the unconditional

CCAPM performs rather well, producing small pricing errors, none of which are statistically

different from zero. This is consistent with findings of Parker and Julliard (2005) who argue

that CCAPM with long-run consumption growth is able to explain the cross-section of stock

returns. Interestingly, for the 5-year horizon (S = 19) the CCAPM does not perform as well

- pricing errors are larger in magnitude, and, in particular, Small minus Large Value pricing

error is statistically significant. It is not surprising that in both cases the scaled version of

the model performs better, displaying small and insignificant pricing error. Imposing the

conditional moment restrictions nonparametrically reduces the advantage of the conditional

models over the unconditional ones as is the case in all of the situations analyzed above.

Still, for both S = 11 and S = 19 none of the pricing errors are statistically different from
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zero. Given the lack of evidence that the long-run consumption risk of Value minus Growth

comoves with its conditional expected return it is difficult to conclude that the conditional

model’s performance is indeed an improvement over the unconditional model.

6 Conclusion

This paper investigates the empirical performance of conditional asset pricing models in

which conditioning information captures the changing composition of total wealth, and as

such is a source of time-variation in expected returns and covariances. The main finding

is that the time-series behavior of consumption risk associated with the trading strategies

that capture the “value premium” in the cross-section of stock returns are is at odds with

the dynamics of conditional expected returns on these strategies. The evidence I present is

consistent with the argument of Lettau and Ludvigson (2001b) that the cointegrating resid-

ual of consumption and wealth predicts that value portfolio returns covary with aggregate

consumption growth more during “bad times”, when risk premia are high, than during “good

times,” while the opposite is true for growth portfolios. At the same time, the conditional

expected returns on value portfolios do not increase by more than those of growth portfolios

in “bad states,” as predicted by the conditional CCAPM. This central conclusion is largely

robust to the alternatives ways of measuring consumption risk, such as using consumption

of stockholders, or (to a lesser extent) considering consumption growth over longer horizons.

The evidence presented here suggests that greater covariation of returns with the measure

of consumption growth might not be sufficient to explain the value premium by itself. The

fact that the conditional covariances and conditional expected returns on value portfolios

do not move in the same direction as functions of conditioning information suggests that

another risk factor might be required whose dynamics would play an offsetting role.

The conditional models that are not rejected on the basis of average pricing errors are

the CCAPM with long-horizon consumption growth and the two-factor CWCAPM in which

consumption growth and aggregate wealth growth are two separately priced sources of risk,

which suggests that the cross-section of average returns reflects long-run consumption risk
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that is partly captured in the return on the market portfolio (e.g. Bansal and Yaron (2004),

Hansen, Heaton, and Li (2008)). However, the relative success of these models appears

to be driven primarily by their unconditional, rather than conditional, properties (in fact,

conditional pricing errors are non-zero, at least for the latter).

Better measurement of consumption risk could be part of the solution to the remain-

ing puzzle, e.g. by allowing infrequent adjustment of consumption to wealth shocks, as

advocated by Jagannathan and Wang (2007), and by measuring long-run (rather than con-

temporaneous) consumption risk of households that participate in the stock market as in

Malloy, Moskowitz, and Vissing-Jørgensen (2005). Applying the methodology developed

here to testing the conditional implications of the asset pricing models considered in these

recent studies should yield further insights into the role of consumption risk in explaining

the cross-section of stock returns, but is fraught with difficulties as estimation of conditional

covariance may not be feasible given the data available to researchers at present.
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Appendix

A Intertemporal CAPM with the Composition Effect

Here I present a stylized model that illustrates the potential role for wealth composition in

supplying conditioning information for asset pricing tests. In order to highlight the basic

intuition and allow straightforward interpretation of parameters that can be estimated, I

first restrict my attention to economies populated by representative consumer(s) who derive

income from financial assets and human capital (in the form of a single stream of labor

income). The consumer may or may not be restricted from borrowing against her human

wealth. The derivation follows standard ICAPM arguments as in Merton (1973) and Breeden

(1979), slightly generalized using the methodology developed by Duffie and Epstein (1992).

I then consider a stylized economy with heterogeneous investors who have relative wealth

concerns as in Roussanov (2010).

Since the primary focus of this paper is empirical, I do not prove that the model presented

here possesses an equilibrium solution. Provided that an equilibrium exists, I characterize

the testable restrictions it places on the cross-section of asset returns as well as on aggregate

consumption14.

The technologies available to the investor consist of a vector of K risky stocks S =

[S1, . . . , SK ]′ , a riskless bond B, and a stream of aggregate labor income y, with the dynamics

14Some authors whose models are similar in spirit to mine, such as Santos and Veronesi (2006) and
Cochrane, Longstaff, and Santa-Clara (2008) are able to characterize the equilibrium quantities more ex-
plicitly by making specific assumptions that restrict the dynamics of asset returns. These pure-exchange
models, styled after Lucas (1978), impose a restriction that aggregate (nondurable) consumption equals the
sum of aggregate labor income and aggregate dividends. Since I am estimating the model quantities, such
as the consumption function, directly from the data, I cannot make such assumptions. The issues of equi-
librium existence in the more general settings that are similar to mine have been addressed rigorously by,
for example, Cuoco (1997) and He and Pagés (1993).
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given by

dSt

St

= µtdt + σtdZt,

dBt

Bt

= rtdt,

dyt = mytdt + σyytdZt,

where Zt is an M -dimensional Brownian motion with E(dZt, dZ
′
t) = I, σ is a N×M matrix,

σy is a 1×M vector, N ≤ M (i.e. markets are not necessarily complete).

The dynamic budget constraint gives the law of motion for financial wealth:

dWt = [(rt + α′(µt − rt1))Wt + yt − ct]dt + α′WtσtdZt,

where α is the vector of wealth shares invested in each risky asset.

In order to simplify exposition and focus on the composition effect as the sole driver of

time-variation in conditional moments, assume that there are only two state variables affect-

ing the conditional moments of returns and entering the consumer’s dynamic optimization

problem. In particular, assume that m and σy are constant, while µt, σt and rt are adapted

to the filtration generated by [W, y] (in what follows I suppress the time subscripts). That is,

conditional expected returns and the conditional covariance matrix of returns can potentially

depend only on the total value of the market portfolio and aggregate labor income y.

In the most general case that is relevant to the empirical discussion in this paper, the

representative agent’s preferences are represented by stochastic differential utility (see Duffie

and Epstein (1992) for details). These preferences are given by a tuple (f ∗, A), referred to

as “aggregator”, where f ∗ is a “felicity” function of the current consumption and of the

continuation utility (thus responsible for intertemporal substitution) and A is the “variance

multiplier” of the utility process (reflecting risk aversion). It turns out that for any such

aggregator there exists a normalized aggregator (f, 0), which represents the same preferences

(i.e. the two are ordinally equivalent). This simplifies calculation significantly. In particular,
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using a normalized aggregator, the Bellman equations is given by the following equation:

0 = max
c,α

DV + (rW + y) Vw + myVy +
1

2
σyσ

′
yy

2Vyy, (A-1)

where

DV = (α′(µ− r1)− c)WVw +
1

2
α′σσ′αW 2VWW + α′σσ′yWyVWy + f(c, V (W, y))

In general, the standard first order conditions characterize the optimal consumption and

investment policies.

• Consumption:

VW (W, y) = fc(c, V ) (A-2)

• Portfolio weights:

α = − VW

WVWW

(σσ′)−1
(µ− r1)− (σσ′)−1

σσ′y
yVWy

WVWW

. (A-3)

From the latter we can again obtain the restriction of conditional expected returns:

µi − r = −VWW

VW

WCov(Ri, RM)− y
VWy

VW

Cov(Ri,
dy

y
).

But now differentiating the envelope condition yields

VWW = fccCW + fcV VW and

VWy = fccCy + fcV Vy
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Then the conditional moment restrictions on asset returns15 can be rewritten as

µi − r = −W

(
fcc

fc

CW + fcV

)
Cov(Ri, RM)− y

(
fcc

fc

Cy +
fcV Vy

fc

)
Cov(Ri,

dy

y
), (A-4)

where CW = ∂C∗(W,y)
∂W

and Cy = ∂C∗(W,y)
∂y

for the optimal consumption policy C∗(W, y).

Alternatively, using the CES properties of the aggregator, we can write

µi − r = −
(

fccC

fc

εW + WfcV

)
Cov(Ri, RM)−

(
fccC

fc

εy +
yfcV Vy

fc

)
Cov(Ri,

dy

y
), (A-5)

where εW = WCW

C
and εy = yCy

C
are elasticities of consumption with respect to financial

wealth and labor income. I use the CES specification of Kreps and Porteus (1978) for the

SDU aggregator

f ∗ =
δ

1− γ

c1−γ − V 1−γ

V −γ
, A =

α− 1

V
,

which has a normalized aggregator with

f =
δ

1− γ

c1−γ − (αV )
1−γ

α

(αV )
1−γ

α
−1

,

where −fccC
fc

= γ is the reciprocal of the constant elasticity of intertemporal substitution

and α is the risk aversion parameter. These preferences are the continuous-time limit of the

recursive utility introduced by Epstein and Zin (1989) and Weil (1990). If α = 1 − γ these

preferences collapse to the standard additive isoelastic utility with curvature γ.

In this case we have

µi − r = γεW Cov(Ri, RM) + γεyCov(Ri,
dy

y
), (A-6)

which, as a consequence of the Itô’s lemma is equivalent to the consumption CAPM restric-

15Notice that in general this relation cannot be reduced to the familiar two-factor representation involving
the market return and the consumption growth due to the presence of labor income.
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tion

µi − r = γCov(Ri,
dC

C
) (A-7)

In the case with no labor income εy = 0, and by homotheticity of the value function,

εW = 1, so we obtain the usual (conditional) CAPM:

µi − r = γCov(Ri, RM).

In the more general case, using the CES aggregator we can see that the market prices of

risk associated with the representation (A-5) are given by

λW = γεW −WfcV and λy = γεy − yfcV Vy

fc

,

where the second additive component of each of the risk prices does not allow a simple

interpretation16. As we can see, the basic two-factor ICAPM relation (8) obtains:

µi − r = λW Cov(Ri, RM) + λyCov(Ri,
dy

y
), (A-8)

However, the market prices of risk λ corresponding to the two conditional covariances

become additive functions of the consumption elasticities εW and εy, so that (4) does not

hold. The analogous expression would be instead a three-factor model:

µi − r = γCov(Ri,
dC

C
)−WfcV Cov(Ri, RM)− yfcV Vy

fc

Cov(Ri,
dy

y
). (A-9)

Although functional form of the second additive component of a risk price is difficult to

characterize, it is apparent what properties it needs to posses in order for the market prices

of risk to match their empirical counterparts. In particular, these functions need to move in

the opposite direction from consumption elasticities (as functions of conditioning variables).

16Campbell (1996) uses the discrete-time recursive utility to derive a similar intertemporal asset pricing
model that includes the market return and the labor income growth as factors. In his framework, how-
ever, risk prices depend only on risk aversion, and do not include either the intertemporal elasticity or the
intratemporal consumption elasticities
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In addition, in order to be consistent with high values of the reciprocal of EIS, these functions

need to be of the same order of magnitude of consumption elasticities, but of the opposite

sign.

Most of the discussion in what follows, as well as the main body of the paper, refers to

the state-separable case with CRRA utility.

Via a discrete-time approximation the equilibrium relationship in (A-8) implies a condi-

tional linear factor model

Et

(
Rei

t+1

) ≈ γεW (zt) Covt(R
ei
t+1, R

M
t+1) + γεy (zt) Covt(R

ei
t+1,

∆yt+1

yt

), (A-10)

or in the more familiar reduced form notation

Et

(
Rei

t+1

) ≈ Covt

(
Rei

t+1, ft+1

)′
λ (zt) , (A-11)

Note that this representation does not require the knowledge of the present value of

human wealth (which is endogenous to the model), which is useful for empirical work, since

the latter is not observable to an econometrician.

The moments of asset returns (means and covariances) can vary over time as functions

of the state variables W and y. In general, the consumption elasticities also vary over time,

which leads to time-varying prices of risk associated with the two factors/state variables,

λW = γεW and λy = γεy. Consequently, (A-5) or, equivalently, (A-8) are conditional

moment restriction. In principle, these moment restrictions can be tested without the use

of conditioning information, as long as the relevant data is observed at a high frequency

(Andersen, Bollerslev, Diebold, and Labys (2003)). However, in practice this is not feasible,

since, unlike financial asset returns, neither labor income nor consumption are observed

frequently by the econometrician.

Therefore, in order to proceed with empirical analysis we need to specify the set of

variables that must be included in the conditioning information set. In what follows we

assume that the functions µt, σt and rt are homogeneous of degree zero in the state variables
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W and y. That is, these (equilibrium) quantities are functions only of x = W
y

, the ratio of

financial wealth to labor income17. This assumption also implicitly requires the ratio x to be

stationary in order for the agent’s optimization problem to have a solution. This condition

is economically intuitive and is a convenient starting point for empirical implementation.

Under the above assumption the value function given by (A-12) is homogeneous (of degree

1−γ) in the two state variables W and y. Then one can show (along the lines of Koo (1998),

Appendix A) that the optimal consumption function is of the form

C = Q (x) (W + yP (x)) ,

for some functions Q (x), P (x). This highlights the difference between the static CAPM that

includes human capital as a component of the total wealth portfolio and the intertemporal

CAPM in which the composition of total wealth changes over time. In the former case

market prices of risk are fixed, sice the consumption function is constant, whereas in the

latter case the marginal propensity to consume out of total wealth (essentially controlled by

Q (x) ) as well as the present value of total wealth (i.e. W +yP (x)) endogenously depend on

the composition of total wealth and on the intertemporal hedging demands that arise from

its variation over time.

Unfortunately the closed-form solution for the consumption function is not available

within this framework even if the dynamics of asset returns were restricted further (and even

attempting to solve for it numerically would be a daunting task). However, we can express

the elasticities of consumption (and therefore the market prices of risk) in terms of observable

variables that reflect time-variation in the composition of total wealth. In particular, this

will enable us to estimate these quantities from the data and therefore to test the model’s

restrictions on consumption and asset returns jointly.

From homogeneity of the consumption function it follows that the consumption elastici-

17Santos and Veronesi (2006) in effect make a similar assumption by treating conditional betas as functions
only of the shares of labor income in consumption instead of the entire cross sectional distribution of shares
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ties can be expressed as functions of the wealth to income ratio x:

CW = Q′ (x) (x + P (x)) + Q (x) (1 + P ′ (x)) ,

Cy = Q′ (x)
(
xP (x)− x2

)−Q (x) (P (x) + xP ′ (x)) ,

εW =
WCW

C
=

xCW

Q (x) (x + P (x))
≡ ϕ (x) ,

εy =
yCy

C
=

Cy

Q (x) (x + P (x))
≡ ψ (x) ,

1 = εW + εy

It can be easily seen that this representation also implies that the market prices of risk

are functions of the ratio of labor income to consumption derived by Santos and Veronesi

(2006)18. Let ς (x) = C
y

= Q (x) (x + P (x)); then CW = ς ′ (x) ⇒ εW = ς′(x)
ς(x)

x, and εy =

1− ς′(x)
ς(x)

x. As long as the consumption function is monotonic, there is a one-to-one mapping

between the financial wealth to labor income ratio and the labor income to consumption

ratio.

The cointegrating residual of consumption, financial wealth, and labor income, intro-

duced by Lettau and Ludvigson (2001a), is interpreted by these authors as a proxy for (the

logarithm of) the ratio of consumption to total wealth. In my notation, the latter quantity

is represented by
C (W, y)

W + yP (x)
= Q (x) .

Therefore, this variable can also be viewed as conveying the same information about the

composition of total wealth as the wealth to income ratio. Clearly, the same can be said for

the wealth to income ratio W
C

, which is similar to the stock market wealth to consumption

ratio of Duffee (2005), since in the present model the entire financial wealth is represented

by the total stock market.

18One can also easily verify that if the financial wealth to labor income ratio x is fixed (i.e. there is no
variation in the composition of wealth), the consumption elasticities are constant and equal to the shares of
human and nonhuman wealth in the total wealth portfolio. Thus, there is no time-variation in market prices
of risk and the Intertemporal CAPM reduces to the standard two-factor CAPM with human capital, as in
Mayers (1972), which must hold unconditionally.
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Thus, in light of the fact that any two of the three variables W , y, and C provide a

sufficient statistic for the conditioning information implied by the model (and therefore for

the market prices of risk and the conditional moments of returns) any one of the three

variables introduced above could be used in empirical tests of the equilibrium condition

(A-8).

Heterogeneity and social status concerns

Departing from the assumption of representative investor, I now assume that there N

households, each household j has its own labor/proprietary income process given by

dyj
t = myj

t dt + σyy
j
t dZ

j
t ,

which is driven by the Brownian vector dZj
t =

[
dZt dZ̃j

t

]′
, whose components dZt and

dZ̃j
t are independent so that the latter captures the idiosyncratic part of household’s wealth

and consumption growth (in general, markets are incomplete).

Preferences exhibit social status externalities of a type introduced in Roussanov (2010).

Households solve

Vt

(
W j

t , yj
t , W̄t

)
= max

∫ ∞

t

e−ρ(s−t)U(Cj
s , W̄s)ds

with the period utility function:

U(Cj
t , W̄t) =

(
Cj

t

)1−γ

1− γ
+ ηW̄ 1−γ

t

(
Cj

t

W̄t

)
,

where individual households view the aggregate wealth process

dW̄t = µw
t W̄tdt + σW̄

t W̄tdZt

as exogenous.
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This problem can be represented by the Bellman equation

0 = max
c,α

DV + (rW + y) Vw + myVy + µw
t W̄VW̄ (A-12)

+
1

2
σW̄

t σW̄ ′
t y2V

W̄W̄
+ σW̄

t σ′yy
2Vyy +

1

2
σyσ

′
yy

2Vyy − ρV, (A-13)

where

DV = (α′(µ−r1)−c)WVw +
1

2
α′σσ′αW 2VWW +α′σσ′yWyVWy +α′σσW̄ ′WW̄VWW̄ +U(c, W̄t)

As before, standard first order conditions characterize the optimal consumption and

portfolio allocations.

• Consumption:

VW (W, y) = Uc(c, W̄t) (A-14)

• Portfolio weights:

α = − VW

WVWW

(σσ′)−1
(µ− r1)− (σσ′)−1

σσ′y
yVWy

WVWW

− (σσ′)−1
σσW̄ ′ W̄VWW̄

WVWW

. (A-15)

The restriction on conditional expected returns is now (for individual investor j):

µi − r = −
(

W
VWW

VW

+ W̄
VWW̄

VW

)
Cov(dRi, dRM)− y

VWy

VW

Cov(dRi,
dyj

yj
).

Now differentiating the envelope condition yields

VWW = UccCW ,

VWy = UccCy , and

VWW̄ = UccCW̄ + UcW̄
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Then the conditional moment restrictions on asset returns can be rewritten as

µi − r = −
(

W j
t

Ucc

Uc

CW + W̄t
UcW̄

Uc

)
Cov(Ri, RM)− yj

t

Ucc

Uc

CyCov(Ri,
dyj

yj
),

or, alternatively,

µi − r = −Cj
t

Ucc

Uc

Cov(Rj,
dCj

t

Cj
t

)− W̄t
UcW̄

Uc

Cov(Rj, RM), (A-16)

where −Cj
t

Ucc

Uc
= γ

(Cj
t )
−γ

(Cj
t )
−γ

+ηW̄−γ
t

and −W̄t
UcW̄

Uc
= γ

ηW̄−γ
t

(Cj
t )
−γ

+ηW̄−γ
t

.

Let sj
t =

Cj
t

C̄t
be the ratio of individual to per-capita consumption. Then then the latter

restriction can be aggregated by following the arguments of Grossman and Shiller (1982).

Averaging this expression across households (and assuming that all households participate

in the equity market) obtains

µj − r = λCCov(Rj,
dC̄t

C̄t

) + λW Cov(Rj, RM), (A-17)

where the risk prices are λC = γEt

(
s−γ
t +η

(
C̄t
W̄t

)γ

s−γ−1
t

)−1

, and λW = γEt

(
η
(

C̄t
W̄t

)γ

s−γ
t +η

(
C̄t
W̄t

)γ

)
.

Thus, the prices of aggregate consumption risk and aggregate wealth risk both vary over

time as functions of the ratio of aggregate consumption to financial wealth C̄t

W̄t
, as well as,

potentially, the cross-sectional distribution of consumption.

B Consistency of nonparametric price of risk estimators

In order to establish the uniform consistency of the estimators of market prices of risk λ̂ (z)

it is enough to show the uniform weak convergence of the objective function,

QT (z; λ) = gT (z)′ WgT (z) ,
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to its population analogue,

Q∞ (z; λ) = g∞ (z)′ Wg∞ (z) ,

where

gi
∞ (z) = E

(
Rei

t+1 − Cov(Rei
t+1, ft+1|z)′λ (z) |z)

= 0.

This is true since the population objective reaches its minimum (since W is assumed to be

positive semidefinite) at the true value of the functional parameter λ̃ (z):

Q∞
(
z; λ̃

)
= 0 for all z ∈ Z

and identification is ensured as long as the number of moment conditions N (i.e. the number

of test assets) is at least as large as the number of functional parameters K (i.e. the number

of factors): λ̃ (z) is unique for each z ∈ Z (here Z denotes the domain of conditioning

variable(s), Z ⊂ Rd). The aim is therefore to show that

sup
z∈Z

sup
λ∈Λ

‖QT (z; λ)−Q∞ (z; λ)‖ p→ 0 as T →∞, (B-1)

which would imply that

sup
z∈Z

∥∥∥λ̂ (z)− λ̃ (z)
∥∥∥ p→ 0 as T →∞.

To simplify exposition, I consider only the special case that factors have conditional mean

equal to zero. Then the conditional moment restrictions can be written as

gi
∞ (z) = E

(
Rei

t+1 − (Rei
t+1ft+1)

′λ (z) |z)
= 0.
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The sample analogues of these moment conditions are

gi
T (z) =

1∑T−1
t=1 K

(
z−zt

h

)
T−1∑
t=1

[
Rei

t+1 −
(
Rei

t+1 × ft+1

)′
λ
]
K

(
z − zt

h

)
.

They can be alternatively represented as

gi
T (z) =

Li
T

f̂T (z)
,

where

Li
T (z; λ) =

1

Thd

T−1∑
t=1

Ψ
(
Re

t+1, ft+1; λ
)
K

(
z − zt

h

)

with

Ψ
(
Re

t+1, ft+1; λ
)

= Re
t+1 −

(
Re

t+1 × ft+1

)′
λ,

and f̂T (z) is the kernel estimator of the marginal density f (z) of z:

f̂T (z) =
1

Thd

T−1∑
t=1

K

(
z − zt

h

)
.

Now we can appeal to the standard results for kernel M-estimators and kernel density estima-

tors to establish the uniform convergence of these quantities to their population counterparts

Li
∞ (z; λ) = f (z) E [Ψ (R, f ; λ) |z] and f (z), respectively. Following Brandt (1999) one can

use the result by Gourieroux, Monfort, and Tenreiro (2000) who show that, under a set of

conditions described below,

sup
z∈Z

sup
λ∈Λ

∥∥Li
T (z; λ)− Li

∞ (z; λ)
∥∥ a.s.→ 0 as T →∞.

Uniform consistency of kernel density estimators is a standard result (e.g. Pagan and Ullah

(1999), Theorem 2.8). Combining the two and applying the continuous mapping theorem

yields B-1. The following conditions are required in order establish the above results:
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1. The kernel function K (.) is Lipschitz continuous, has bounded support and

∫

Rd

K (u) du = 1

2. The sets Z and Λ are compact

3. The bandwidth h → 0 as T →∞ and there exists such β ∈ (0, 1) that T (1−β)/2hd

log T
→∞

as T →∞

4.
(
Re

t+1, ft+1, zt

)
form a strictly stationary process with the geometric mixing property:

sup
A∈F0,B∈Fk

[P (A ∩B)− P (A) P (B)] < αρk,∀k ∈ N∗,

where α ≥ 0, 0 ≤ ρ < 1,F0 = σ
(
Re

τ+1, fτ+1, zτ , τ ≤ 0
)
,Fk = σ

(
Re

τ+1, fτ+1, zτ , τ ≥ k
)
.

5. The distribution of zt exists, is continuous, and has uniformly continuous strictly pos-

itive pdf and absolutely integrable characteristic function.

6. Ψ (R, f ; λ) is (Lipschitz) continuous on Λ for all R, f and measurable in R, f for all

λ; ∃δ > 0: E

[
sup
λ∈Λ

|Ψ (
Re

t+1, ft+1; λ
) | 2β +δ

]
< ∞, where β from condition (3) on the

bandwidth.

7. Li
∞ (z; λ) are uniformly equicontinuous for all i:

∀ε > 0, ∃δ > 0 : sup
z∈Z

sup
‖u−s‖<δ

sup
λ∈Λ

∣∣Li
∞ (u; λ)− Li

∞ (s; λ)
∣∣ < ε

Remark A-1 In place of the fixed matrix W the objective function can be specified using

some positive definite matrix WT (z), which uniformly consistently estimates some W∞(z)

used in the population objective. A relevant example is a conditional version of the weighting

matrix based on the Hansen and Jagannathan (1997) measure of pricing errors, E(ReRe′|z)−1,

which is replaced by its nonparametric estimate ̂E(ReRe′|z)
−1

in a finite sample.
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C Bootstrap

Since stationarity of the conditioning variable (z) is a maintained assumption throughout

the empirical investigation in this paper, I use stationary bootstrap in order to construct

confidence intervals for nonparametric and semiparametric estimates. The bootstrap proce-

dure allows one to approximate the entire sampling distribution of the estimators using their

empirical distribution (EDF).

For a sample of length T , the stationary bootstrap procedure introduced by Politis and

Romano (1994) amounts to constructing R resampled sets of T observations, which consist

of overlapping blocks of observations from the original set. Each observation includes the

vector of realized portfolio returns and the realized consumption growth at time t+1 as well

as the vector of conditioning information known at time t. The block lengths are sampled

randomly from a geometric distribution. This ensures that the resulting time-series remain

stationary.

In order to minimize the bias in the distribution of nonparametric estimators I under-

smooth the estimates (i.e. use low values of the bandwidth parameter h). See Horowitz

(2001) for an extensive discussion on the use of bootstrap procedures in various settings,

including nonparametric estimation and dependent data.

I use fully non-parametric bootstrap to construct point-wise confidence bands for the

functional estimates of conditional expected returns and conditional covariances, as well as

for the tests of differences in conditional moments across points in the state space (e.g.,

Härdle (1992)).

For pricing error tests I use a semi-parametric bootstrap procedure. I use bootstrap to

simulate the return and covariance realizations under the null hypothesis that the average

conditional pricing error is equal to zero for each portfolio. Specifically, I recenter the

residuals

ui
t+1 = Rei

t+1 − Ĉov(Rei
t+1,

Ct+1

Ct

|zt)λ̂ (zt)

around zero, resample them jointly with zt and consumption growth realization using the sta-
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tionary block-bootstrap method described above, and calculate excess returns corresponding

to each bootstrapped observation that corresponds to period τ as

R̃ei
τ+1 = Ĉov(Rei

τ+1,
Cτ+1

Cτ

|zτ )λ̂ (zτ ) + ui
τ+1.

I then re-estimate the model on each of the bootstrapped samples in order to construct the

distribution of average pricing errors for each portfolio.

D Data

I use both quarterly and monthly data in my empirical tests. The proxy for the portfolio

of traded assets is the value-weighted portfolio of NYSE, NASDAQ and Amex stocks. The

universe of traded assets used in cross-sectional tests consists of the 6 portfolios of NYSE,

NASDAQ and Amex stocks sorted annually on size and book to market equity, which are

used by Fama and French (1993) to construct their benchmark factor returns SMB and

HML. Monthly returns are compounded to obtain quarterly returns. Excess returns are

constructed using the one-month and three-month Treasury bill rates in place of the riskless

rate at monthly and quarterly frequency, respectively.

In order to maintain consistency with previous studies and, in particular, to facilitate the

comparison with Lettau and Ludvigson (2001b) and Santos and Veronesi (2006), I use the

consumption, financial wealth, and labor income series constructed by Lettau and Ludvigson

(2001a) (obtained from Sydney Ludvigson’s website). I also use their cay variable. The

financial wealth variable a is used only for constructing the financial wealth to income ratio ay

at the quarterly frequency. Consumption series is NIPA nondurable consumption (excluding

shoes and clothing at quarterly frequency, following Lettau and Ludvigson (2001a)) and

services. Since some of the components of the cay residual are not available at the monthly

frequency, so I use the ratio of stock market wealth to consumption ac as a proxy for the

wealth to consumption ratio. At the monthly frequency, I use the ratio of total stock market

capitalization (i.e. NYSE, NASDAQ and Amex, obtained from CRSP) as a proxy for total
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financial wealth in constructing the ay and ac variables, following Duffee (2005). Monthly

stock market wealth, labor income, and consumption are all deflated with the price deflator

of nondurables and services. All data is ranging from the fourth quarter of 1952 to the fourth

quarter of 2008. Monthly labor income and consumption data are from the U.S. National

Income and Product Accounts.

E Testing conditional factor models using beta representation

Consider the setup of Lettau and Ludvigson (2001b), who specify a conditional consumption

CAPM with a single conditioning variable, cay - the cointegrating residual of consumption,

financial wealth and labor income, so that f̃t+1 =
[

∆Ct+1

Ct
, ∆Ct+1

Ct
× cay t

]
in (7) above. Their

tests concentrate on the beta representation

E(Rei
t+1) = η0 + η1β

i
cayt

+ λ0β
i
∆Ct+1

+ λ1β
i
∆Ct+1×cayt

, (E-1)

which is equivalent to (7) except that they allow a non-zero (and time-varying) cross-sectional

intercept (η0 + η1cay t), which implies that the conditional zero-beta rate is not necessarily

equal to the risk-free interest rate. The estimate and test this specification using the standard

cross-sectional regression methodology of Fama and MacBeth (1973), first estimating the

betas (loadings) of returns on the scaled factors
[
cay t,

∆Ct+1

Ct
, ∆Ct+1

Ct
× cay t

]
by time-series

regression and then regressing the cross-section of returns on the cross-section of betas to

obtain the risk premium estimates λ (and η).

An alternative approach would be to test the conditional implications of the consumption

CAPM using cay as the conditioning variable. The conditional beta representation is given19

19Lettau and Ludvigson (2001b) start with the stochastic discount factor model Et[Mt+1R
i
t+1] = 1, where

Mt+1 = at + bt
∆Ct+1

Ct
. Taking the unconditional expectation and assuming the SDF coefficients are linear

functions of the conditioning variable yields

E[(a0 + a1cayt + (b0 + b1cayt)
∆Ct+1

Ct
)Ri

t+1] = 1

and standard manipulations produce the expected return-beta representation (E-1). Alternatively, working
with the conditional expectation directly, the conditional expected returns are given by
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by

Et(R
ei
t+1) = ηt + λtβ

i
t , (E-2)

where ηt, λt, and βi
t are all functions of cay . Conditioning down obtains

E(Rei
t+1) = E

(
ηt + λtβ

i
t

)
.

Assuming, as Lettau and Ludvigson (2001b) do, that conditional betas (and risk premia)

are linear, i.e. βi
t = βi

0 + βi
1cay t, these pricing implications can also be tested using the

Fama-Macbeth methodology (e.g. Ferson and Harvey (1999)). Specifically, the parameters

βi
0 and βi

1 can be estimated as factor loadings in the time series regressions

Rei
t+1 = α0 + α1cay t + βi

0

∆Ct+1

Ct

+ βi
1

∆Ct+1

Ct

cay t

Then the fitted conditional betas β̂i
t = β̂i

0 + β̂i
1cay t can be used in the cross-sectional regres-

sions (at each date t ) to estimate ηt and λt. The latter can be used to obtain either the

unconditional averages of the risk premium and the zero-beta rate, or can be projected on

the conditioning information set. Average of the conditional pricing errors for each asset are

then given straightforwardly as

ui = E(Rei
t+1)− E

(
η̂t + λ̂tβ̂

i
t

)
.

Both of these are valid approaches to testing a conditional factor model. However, the

latter approach has more power, since it imposes additional restrictions on the dynamics of

conditional betas and expected returns. A simple way to illustrate the dramatic differences

between the two approaches is to compare the average pricing errors. Figure 7 plots the

Et(Ri
t+1) =

1
at
− bt

at
Et[

∆Ct+1

Ct
Ri

t+1],

which leads to the beta representation for excess returns (E-2).
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average returns on the 25 portfolios formed on size and book-to-market (see Appendix for

data description) against the average returns predicted by four empirical models: the un-

conditional consumption CAPM, the unconditional scaled-factor specification of conditional

CCAPM in (E-1), the three-factor model of Fama and French (1993), and the conditional

specification of conditional CCAPM in (E-2). The unconditional consumption CAPM (top

left panel) is well-known to have virtually no explanatory power for the average returns

of the Fama-French portfolios. In contrast, the scaled CCAPM of Lettau and Ludvigson

(2001b) does a relatively good job at lining up the predicted mean returns against the ac-

tual ones (top right panel), reducing the square root of the average (squared) pricing errors

(alphas) by a third compared to the unconditional CCAPM (from 0.6% to 0.4% for quar-

terly returns). This performance is comparable to the well-known ability of the Fama-French

portfolio-based model to explain the cross-section of value and size-sorted portfolios (bottom

left panel). However, imposing the conditional restrictions (E-2) eliminates virtually all of

the advantage of the conditional model over the unconditional one. The conditional model

generates very little dispersion in the predicted average returns (bottom right panel), thus

failing to explain any of the variation in the observed mean portfolio returns.
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Table I: Differences in conditional moments of portfolio returns
Bootstrap tests of differences in conditional moments of returns for the benchmark portfolios,
using z = cay as the conditioning variable, where zL = −0.0174 and zH = 0.02 correspond to
the 10th and 90th percentiles of the distribution of cay , respectively. The test statistics are
differences in point estimates of conditional moments evaluated at these two states for each
test portfolio. The p-values for the one-sided tests reported in the parentheses are computed
using the bootstrap distributions of the corresponding test statistics centered at zero. Data
is for the time period IV.1952 - IV.2008.

E(R|zH)− E(R|zL) 100× (cov(R, ∆c|zH)− cov(R, ∆c|zL))
Small Growth 5.39 -1.73

( 0.01) ( 0.07)
Small Value 4.45 -0.75

( 0.01) ( 0.22)
Large Growth 5.89 -1.46

( 0.00) ( 0.02)
Large Value 4.30 -0.54

( 0.00) ( 0.21)
Small Value minus Growth -0.93 0.98

( 0.33) ( 0.03)
Large Value minus Growth -1.58 0.92

( 0.16) ( 0.03)
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Table II: Average pricing errors: quarterly data, cay
Unconditional pricing errors for the conditional model are given by

αi = Ê
[
Rei

t+1 − Ĉov(Rei
t+1, ft+1|zt)

′λ̂ (zt)
]
,

where i is one of the four long-short portfolio returns that are combinations of the original
6 portfolios used to estimate the model: Small Value minus Small Growth (SV-SG), Small
Growth minus Large Growth (SG-LG), Small Value minus Large Value (SV-LV) and Large
Value minus Large Growth (LV-LG).
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM 1.75 -0.70 0.54 0.51
( 0.01) ( 0.13) ( 0.19) ( 0.24)

unconditional (I)CAPM 2.05 -0.11 0.93 1.01
( 0.00) ( 0.64) ( 0.00) ( 0.01)

unconditional CWCAPM 0.83 -0.73 0.61 -0.51
( 0.37) ( 0.14) ( 0.09) ( 0.00)

CCAPM scaled with cay 0.52 -0.22 0.74 -0.44
( 0.26) ( 0.35) ( 0.07) ( 0.02)

(I)CAPM scaled with cay 0.25 -0.34 0.29 -0.37
( 0.54) ( 0.16) ( 0.44) ( 0.08)

CCAPM scaled with yc 1.09 -0.83 0.48 -0.21
( 0.02) ( 0.02) ( 0.10) ( 0.28)

(I)CAPM scaled with yc 0.71 -0.64 0.63 -0.56
( 0.01) ( 0.00) ( 0.01) ( 0.00)

CWCAPM scaled with cay 0.13 -0.11 0.14 -0.12
( 0.58) ( 0.42) ( 0.57) ( 0.45)

conditional CCAPM with cay 1.56 -0.63 -0.67 0.26
( 0.05) ( 0.27) ( 0.09) ( 0.53)

conditional ICAPM with cay 2.05 -0.73 0.48 0.84
( 0.00) ( 0.15) ( 0.06) ( 0.12)

conditional CCAPM with yc 1.59 -0.73 -0.45 0.40
( 0.02) ( 0.19) ( 0.22) ( 0.33)

conditional ICAPM with yc 2.04 -1.06 0.39 0.59
( 0.01) ( 0.06) ( 0.14) ( 0.58)

conditional CWCAPM with cay 0.72 -0.64 0.41 -0.34
( 0.20) ( 0.27) ( 0.37) ( 0.40)

average returns 1.59 0.13 0.88 0.84
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Table III: Average pricing errors: monthly data
Unconditional pricing errors for the conditional model are given by

αi = Ê
[
Rei

t+1 − Ĉov(Rei
t+1, ft+1|zt)

′λ̂ (zt)
]
,

where i is one of the four long-short portfolio returns that are combinations of the original
6 portfolios used to estimate the model: Small Value minus Small Growth (SV-SG), Small
Growth minus Large Growth (SG-LG), Small Value minus Large Value (SV-LV) and Large
Value minus Large Growth (LV-LG).
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM 0.83 0.05 0.30 0.58
( 0.00) ( 0.41) ( 0.09) ( 0.04)

unconditional (I)CAPM 0.63 -0.23 0.11 0.30
( 0.00) ( 0.03) ( 0.41) ( 0.03)

CCAPM scaled with ay 0.39 -0.25 0.18 -0.04
( 0.16) ( 0.02) ( 0.33) ( 0.19)

ICAPM scaled with ay -0.04 0.07 -0.03 0.07
( 0.01) ( 0.16) ( 0.04) ( 0.16)

CCAPM scaled with ac 0.35 -0.23 0.16 -0.05
( 0.20) ( 0.03) ( 0.36) ( 0.17)

ICAPM scaled with ac -0.00 0.20 0.03 0.17
( 0.05) ( 0.01) ( 0.83) ( 0.04)

conditional CCAPM with ac 0.75 0.21 0.32 0.64
( 0.00) ( 0.15) ( 0.05) ( 0.00)

conditional CCAPM with ay 0.76 0.22 0.31 0.66
( 0.00) ( 0.15) ( 0.06) ( 0.00)

conditional ICAPM with ay 0.67 -0.16 0.27 0.24
( 0.00) ( 0.37) ( 0.01) ( 0.15)

conditional ICAPM with ac 0.66 -0.19 0.24 0.23
( 0.00) ( 0.22) ( 0.03) ( 0.19)

average returns 0.58 -0.02 0.31 0.26
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Table IV: Sensitivity of conditional moments to conditioning variables
Regression slope coefficients of portfolio excess returns and their ex-post covariances with
consumption growth on the lagged conditioning variable. Standard errors are given in the
parentheses.

ac - monthly data

E(Ri) R2 Covi R2

Growth -0.77 0.01 0.51 0.00
( 0.45) ( 0.00) ( 2.32)

Neutral -0.57 0.01 0.68 0.00
( 0.34) ( 1.47)

Value -0.64 0.01 0.64 0.00
( 0.34) ( 1.44)

cay - quarterly data

E(Ri) R2 Covi R2

Growth 1.35 0.03 -4.47 0.01
( 0.42) ( 3.74)

Neutral 1.11 0.03 -4.29 0.02
( 0.35) ( 2.99)

Value 1.03 0.03 -4.60 0.02
( 0.38) ( 3.31)

cay - quarterly data up to 2003

E(Ri) R2 Covi R2

Growth 2.35 0.07 -1.29 0.00
( 0.57) ( 9.54)

Neutral 1.87 0.07 1.22 0.00
( 0.47) ( 8.12)

Value 1.79 0.05 2.46 0.00
( 0.50) ( 8.32)

yc - quarterly data

E(Ri) R2 Covi R2

Growth -0.25 0.01 0.11 0.00
( 0.19) (19.97)

Neutral -0.15 0.00 0.44 0.00
( 0.17) (17.61)

Value -0.18 0.00 0.70 0.00
( 0.21) (20.72)
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Table V: Differences in conditional moments of portfolio returns - stockholders
Bootstrap tests of differences in conditional covariances of returns on the benchmark port-
folios with stockholder consumption growth and differences in conditional mean excess re-
turns, estimated jointly using z = cay as the conditioning variable, where zL = −0.0174
and zH = 0.02 correspond to the 10th and 90th percentiles of the distribution of cay (in the
entire sample IV.1952 - IV.2008), respectively. The test statistics are differences in point
estimates of conditional moments evaluated at these two states for each test portfolio. The
p-values for the one-sided tests reported in the parentheses are computed using the boot-
strap distributions of the corresponding test statistics centered at zero. Conditional means
and covariances are estimated jointly using monthly observations of quarterly consumption
growth measures based on, alternatively, the NIPA aggregate data, or the stockholder con-
sumption data from the CEX, both for the period 03.1983 - 11.2004 (see Malloy, Moskowitz,
and Vissing-Jørgensen (2005) for detailed description).

Panel A: NIPA
E(R|zH)− E(R|zL) 100× (cov(R, ∆c|zH)− cov(R, ∆c|zL))

Small Growth 1.75 -1.82
( 0.25) ( 0.06)

Small Value 0.76 -0.12
( 0.37) ( 0.45)

Large Growth 2.64 -1.13
( 0.06) ( 0.09)

Large Value 1.14 -0.35
( 0.25) ( 0.30)

Small Value minus Growth -0.99 1.69
( 0.33) ( 0.04)

Large Value minus Growth -1.50 0.79
( 0.17) ( 0.08)

Panel B: CEX stockholders
E(R|zH)− E(R|zL) 100× (cov(R, ∆c|zH)− cov(R, ∆c|zL))

Small Growth 2.14 -9.73
( 0.16) ( 0.06)

Small Value 0.33 -3.92
( 0.41) ( 0.21)

Large Growth 2.83 -7.93
( 0.03) ( 0.05)

Large Value 0.88 -5.35
( 0.25) ( 0.07)

Small Value minus Growth -1.81 5.82
( 0.16) ( 0.05)

Large Value minus Growth -1.95 2.58
( 0.07) ( 0.16)
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Table VI: Average pricing errors: stockholder consumption
CCAPM estimated using monthly observations of quarterly consumption growth measures
based on, alternatively, the NIPA aggregate data, or the stockholder consumption data
from the CEX, both for the period 03.1983 - 11.2004 (see Malloy, Moskowitz, and Vissing-
Jørgensen (2005) for detailed description).
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM (NIPA) 3.43 -3.16 -0.13 0.40
( 0.00) ( 0.00) ( 0.35) ( 0.31)

unconditional CCAPM (stockholders) 1.84 1.11 2.26 0.69
( 0.10) ( 0.16) ( 0.01) ( 0.22)

CCAPM (NIPA) scaled with cay 3.08 -3.20 -0.30 0.18
( 0.00) ( 0.00) ( 0.17) ( 0.52)

CCAPM (stockholders) scaled with cay 1.23 -1.15 1.41 -1.33
( 0.15) ( 0.05) ( 0.06) ( 0.00)

CCAPM (NIPA) scaled with ac -0.33 -1.53 -0.83 -1.03
( 0.03) ( 0.27) ( 0.10) ( 0.09)

CCAPM (stockholders) scaled with ac 0.62 -0.39 -0.27 0.51
( 0.62) ( 0.45) ( 0.07) ( 0.23)

conditional CCAPM (NIPA) with cay 3.45 -3.15 -0.12 0.42
( 0.00) ( 0.00) ( 0.44) ( 0.36)

conditional CCAPM (stockholders) with cay 1.88 1.01 2.15 0.74
( 0.13) ( 0.24) ( 0.05) ( 0.28)

conditional CCAPM (NIPA) with ac 3.29 -2.96 -0.10 0.43
( 0.00) ( 0.00) ( 0.46) ( 0.21)

conditional CCAPM (stockholders) with ac 2.19 0.41 1.74 0.86
( 0.05) ( 0.60) ( 0.21) ( 0.14)

average returns 2.28 -0.79 1.16 0.34
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Table VII: Differences in conditional moments of portfolio returns - long-run con-
sumption risk
Bootstrap tests of differences in conditional covariances of returns on the benchmark portfo-
lios with long-run aggregate consumption growth and differences in conditional mean excess
returns, estimated jointly using z = cay as the conditioning variable, where zL = −0.0174
and zH = 0.02 correspond to the 10th and 90th percentiles of the distribution of cay (in the
entire sample IV.1952 - IV.2008), respectively. Consumption growth is calculated over S +1
quarters.

Panel A: S = 11
E(R|zH)− E(R|zL) 100× (cov(R, ∆c|zH)− cov(R, ∆c|zL))

Small Growth 4.02 0.16
( 0.05) ( 0.52)

Small Value 3.73 5.32
( 0.03) ( 0.88)

Large Growth 5.44 4.78
( 0.00) ( 0.92)

Large Value 4.02 6.46
( 0.00) ( 0.97)

Small Value minus Growth -0.29 5.15
( 0.45) ( 0.03)

Large Value minus Growth -1.43 1.68
( 0.17) ( 0.23)

Panel B: S = 19
E(R|zH)− E(R|zL) 100× (cov(R, ∆c|zH)− cov(R, ∆c|zL))

Small Growth 4.28 -0.56
( 0.04) ( 0.44)

Small Value 4.03 3.80
( 0.03) ( 0.73)

Large Growth 5.72 3.01
( 0.00) ( 0.75)

Large Value 4.56 3.82
( 0.00) ( 0.80)

Small Value minus Growth -0.25 4.36
( 0.47) ( 0.09)

Large Value minus Growth -1.16 0.81
( 0.24) ( 0.40)
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Table VIII: Average pricing errors: long-run consumption risk
CCAPM estimated using quarterly aggregate data, with consumption risk measured by
covariances with long-run consumption growth over S + 1 quarters.
P-values for the test that individual pricing errors are equal to zero given in the parentheses
are computed using (semi)parametric stationary bootstrap with 10000 replications.

Model SV-SG SG-LG SV-LV LV-LG

unconditional CCAPM, S = 11 0.40 0.33 0.47 0.25
( 0.53) ( 0.17) ( 0.22) ( 0.45)

unconditional CCAPM, S = 19 0.72 0.10 0.80 0.02
( 0.43) ( 0.28) ( 0.04) ( 0.70)

CCAPM scaled with cay, S = 11 0.21 0.15 0.49 -0.13
( 0.18) ( 0.19) ( 0.06) ( 0.24)

CCAPM scaled with cay, S = 19 0.18 0.14 0.39 -0.07
( 0.29) ( 0.18) ( 0.12) ( 0.37)

conditional CCAPM with cay , S = 11 0.45 0.32 0.50 0.28
( 0.31) ( 0.42) ( 0.30) ( 0.39)

conditional CCAPM with cay , S = 19 0.51 0.23 0.84 -0.10
( 0.34) ( 0.44) ( 0.23) ( 0.44)

average returns 1.63 0.15 0.97 0.81
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Figure 1: Conditional covariances of portfolio returns with consumption growth
using cay
Each panel depicts the conditional covariance of a portfolio excess return with the with
aggregate consumption growth over the range of the conditioning variable, cay . The solid
line is the mean of the sampling distribution of the nonparametric estimate, the dash-dotted
lines are 95% confidence bounds, all obtained via stationary bootstrap.
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Figure 2: Conditional expected returns using cay
Each panel depicts the conditional covariance of a portfolio excess return with the market
return over the range of the conditioning variable, ay . The top row contains small stock
portfolios, the leftmost column - growth stock portfolios.The solid line is the mean of the
sampling distribution of the nonparametric estimate, the dash-dotted lines are 95% confi-
dence bounds, all obtained via stationary bootstrap.
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Figure 3: Difference in conditional expected returns and conditional covariances
of portfolio returns with consumption growth using cay
Each panel depicts differences in either the conditional expected returns or the conditional
covariance of a portfolio excess return with the aggregate consumption growth over the range
of the conditioning variable, cay for the two long short portfolios:
SV - SG (small value minus small growth)
LV - LG (large value minus large growth)
The solid line is the mean of the sampling distribution of the nonparametric estimate, the
dash-dotted lines are 95% confidence bounds, all obtained via stationary bootstrap.
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Figure 4: Conditional price of consumption risk using cay
The figure depicts the estimated price of consumption covariance risk (risk aversion) implied
by the cross-section of stock returns, as a function of the consumption-wealth residual cay .
The solid line is the mean of the sampling distribution of the nonparametric estimate, the
dash-dotted lines are 95% confidence bounds, all obtained via stationary bootstrap. In
addition, the pricing errors corresponding to the unconditional version of the model, as well
as the scaled-factor conditional version are shown in the bottom set of panels (dashed and
dotted straight lines, respectively).
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Figure 5: Conditional pricing errors for CCAPM using cay
Each panel depicts the conditional pricing error for the portfolio. The solid line is the
mean of the sampling distribution of the nonparametric estimate, the dash-dotted lines
are 95% confidence bounds, all obtained via stationary bootstrap. In addition, the pricing
errors corresponding to the unconditional version of the model, as well as the scaled-factor
conditional version are shown in the bottom set of panels (dashed and dotted straight lines,
respectively).
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Figure 6: Conditional pricing errors for CWCAPM using cay
Each panel depicts the conditional pricing error for the portfolio. The solid line is the
mean of the sampling distribution of the nonparametric estimate, the dash-dotted lines
are 95% confidence bounds, all obtained via stationary bootstrap. In addition, the pricing
errors corresponding to the unconditional version of the model, as well as the scaled-factor
conditional version are shown in the bottom set of panels (dashed and dotted straight lines,
respectively).
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Figure 7: Fama-MacBeth regressions
Each panel plots the average excess returns on the 25 portfolios sorted on size (S, 1 = low, 5
= high) and book-to-market (B, 1 = low, 5 = high)), against the average returns predicted
by one of the four models:
unconditional consumption CAPM, E(Rei

t+1) = η + λβi
∆Ct+1

;

Fama-French three-factor model, E(Rei
t+1) = η + λMβi

RMRF + λSβi
SMB + λHβi

HML ;
unconditional version of the conditional consumption CAPM scaled with cay ,

E(Rei
t+1) = η0 + η1cay t + λ0β

i
∆Ct+1

+ λ1β
i
∆Ct+1×cayt

;

conditional consumption CAPM using cay as the conditioning variable:

E(Rei
t+1) = E

(
ηt + λtβ

i
t

)
, where βi

t = bi
0 + bi

1cay t.
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